福田の数学〜早稲田大学2025商学部第2問〜x軸に関する対称移動とy=√3xに関する対称移動の組合せで決まる点列 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2025商学部第2問〜x軸に関する対称移動とy=√3xに関する対称移動の組合せで決まる点列

問題文全文(内容文):

$\boxed{2}$

$a,b$を実数とする。

座標平面上の点$P_1,P_2,P_3,\cdots $は

以下の条件を満たしている。

すべての正の奇数$n$に対して、$P_n$と$P_{n+1}$は

$x$軸に関して対称な位置にある。

ただし、$P_n$が$x$軸上にあるときは$P_n=P_{n+1}$で

あるとする。

また、すべての正の偶数$n$に対して、

$P_n$と$P_{n+1}$は直線$y=ax+b$に関して対称な

位置にある。

ただし、$P_n$が直線$y=ax+b$上にあるときは

$P_n=P_{n+1}$であるとする。

(1)$a=0,b=1,P_1(0,0)$であるとき、

$P_{2025}$の座標を求めよ。

(2)$a=1,b=0,P_1(2,1)$であるとき、

$P_{2025}$の座標を求めよ。

(3)$a=\sqrt3,b=0,P_1(1,1)$であるとする。

$m,n$を正の整数とする。

$P_m$と$P_n$の距離の最大値を求めよ。

$2025$年早稲田大学商学部過去問題
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$a,b$を実数とする。

座標平面上の点$P_1,P_2,P_3,\cdots $は

以下の条件を満たしている。

すべての正の奇数$n$に対して、$P_n$と$P_{n+1}$は

$x$軸に関して対称な位置にある。

ただし、$P_n$が$x$軸上にあるときは$P_n=P_{n+1}$で

あるとする。

また、すべての正の偶数$n$に対して、

$P_n$と$P_{n+1}$は直線$y=ax+b$に関して対称な

位置にある。

ただし、$P_n$が直線$y=ax+b$上にあるときは

$P_n=P_{n+1}$であるとする。

(1)$a=0,b=1,P_1(0,0)$であるとき、

$P_{2025}$の座標を求めよ。

(2)$a=1,b=0,P_1(2,1)$であるとき、

$P_{2025}$の座標を求めよ。

(3)$a=\sqrt3,b=0,P_1(1,1)$であるとする。

$m,n$を正の整数とする。

$P_m$と$P_n$の距離の最大値を求めよ。

$2025$年早稲田大学商学部過去問題
投稿日:2025.07.28

<関連動画>

福田の数学〜一橋大学2025文系第4問〜ベクトル方程式と領域と角を2等分するベクトル

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

原点を$O$とする座標空間内の

$2$点$A(0,3,-5),B(5,-2,10)$に対して

$\overrightarrow{OP}=s\left \{ (1-t)\overrightarrow{OA}+t\overrightarrow{OB} \right \},x\geqq 0,\dfrac{1}{5} \leqq t \leqq \dfrac{3}{5}$

で定まる点$P$が存在する範囲を$D$とする。

$D$に含まれる半径$10\sqrt2$の円のうち、

その中心と原点との距離が最小となるものを

$C$とする。

円$C$の中心の座標を求めよ。

$2025$年一橋大学文系過去問題
この動画を見る 

山梨大2020 複素数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{(\sqrt3+i)^n(\sqrt3+3i)}{-1+i}$は実数出ないことを示せ.

2020山梨大過去問
この動画を見る 

【高校数学】繫分数式の計算~どこよりも分かりやすく丁寧に~ 1-6【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

福田のわかった数学〜高校2年生047〜領域(2)正領域と負領域

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
2点$A(1,1),B(3,6)$を結ぶ線分$AB$(端点を除く)が直線$y=ax+b$と交点をもつとき,
$(a,b)$の存在する領域を図示せよ.
この動画を見る 

【高校数学】 数Ⅱ-41 解と係数の関係⑧

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x^2-2x+4k+5$が1次式の2乗となるように、定数の値を定めよう。

②$x^2+xy-6y^2-x+7y+k$がx,yの1次式の積に分解できるように、定数kの値を定めよう。
この動画を見る 
PAGE TOP