確率 漸化式 なぜ計算ミスに気づけたか - 質問解決D.B.(データベース)

確率 漸化式 なぜ計算ミスに気づけたか

問題文全文(内容文):
サイコロをふる
$1\rightarrow:+1$進む
$2~6\rightarrow:+2$進む

原点スタート
$n$回目に偶数上にいる確率を$P_{n}$とする
$P_{n}$を$n$で表せ
単元: #数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロをふる
$1\rightarrow:+1$進む
$2~6\rightarrow:+2$進む

原点スタート
$n$回目に偶数上にいる確率を$P_{n}$とする
$P_{n}$を$n$で表せ
投稿日:2019.07.16

<関連動画>

福田の数学〜東京慈恵会医科大学2024医学部第1問〜条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{ 1 }$1から3までの番号をつけた赤玉3個と、1から3までの番号をつけた白玉3個が入った袋から、玉を1個ずつ3回取り出し、玉に書かれた番号を取り出した順に$a_1,a_2,a_3$とする。ただし、取り出した玉はもとに戻さないものとする。
取り出した3個の玉が、赤玉2個、白玉1個であったとき、
$a_1 \lt a_2 \lt a_3$となる条件付き確率は$\boxed{ア}$、
$a_1 \lt a_2$かつ$a_2 \gt a_3$となる条件付き確率は$\boxed{イ}$
である。
この動画を見る 

18東京都教員採用試験(数学:場合の数、数列)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(2)
平面上の10コの円は、任意の2コの円も異なる2点で交わり、3コの円は1点で交わらないとき交点の総数を求めよ。
この動画を見る 

【短時間でマスター!!】順列を解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
順列
男2人、女3人の5人が1列並ぶ。
①両端が女
②男2人が隣り合う
③男が隣りあわない
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試理系第4問〜サイコロの目で決まる複素数の値に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#複素数平面#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$i$を虚数単位とし、$z=\frac{1}{2}+\frac{\sqrt3}{2}\ i\$とおく。
さいころを3回ふり、出た目を順に$a,\ b,\ c$とする。
このとき、積$\ abc$が3の倍数となる確率は$\frac{\boxed{アイ}}{\boxed{ウエ}}$である。
また、$z^{abc}=-1$となる確率は$\frac{\boxed{オカ}}{\boxed{キクケ}}$であり、
$z^{abc}=1$となる確率は$\frac{\boxed{コサシ}}{\boxed{スセソ}}$である。

2022明治大学全統理系過去問
この動画を見る 

【数A】【場合の数と確率】円順列基本 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
・大人2人と子供8人が円形のテーブルに着席するとき、次のような並び方は何通りあるか。
(1)大人2人が隣り合う。
(2)大人2人が向かい合う。

・男子4人、女子4人が手をつないで輪を作るとき、次のような並び方は何通りあるか。
(1)女子4人が続いて並ぶ。
(2)男女が交互に並ぶ。

・8人の中から選ばれた5人が円形上に並ぶとき、並び方は何通りあるか。
この動画を見る 
PAGE TOP