問題文全文(内容文):
$\boxed{5}$
$0\leqq \theta \leqq \dfrac{\pi}{2}$
$\sin3\theta+\sqrt 3\cos3\theta=\sqrt2$を解け.
$\boxed{5}$
$0\leqq \theta \leqq \dfrac{\pi}{2}$
$\sin3\theta+\sqrt 3\cos3\theta=\sqrt2$を解け.
単元:
#数Ⅱ#三角関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{5}$
$0\leqq \theta \leqq \dfrac{\pi}{2}$
$\sin3\theta+\sqrt 3\cos3\theta=\sqrt2$を解け.
$\boxed{5}$
$0\leqq \theta \leqq \dfrac{\pi}{2}$
$\sin3\theta+\sqrt 3\cos3\theta=\sqrt2$を解け.
投稿日:2021.02.25





