2022藤田医科大 出題意図は「瞬殺せよ」なのかな? - 質問解決D.B.(データベース)

2022藤田医科大 出題意図は「瞬殺せよ」なのかな?

問題文全文(内容文):
a1=5,
an+1=3an+2
a16a13a12a9
の値を求めよ。

2022年藤田医科大学 過去問
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
a1=5,
an+1=3an+2
a16a13a12a9
の値を求めよ。

2022年藤田医科大学 過去問
投稿日:2022.01.26

<関連動画>

福田の数学〜ポリアの壺とは逆の試行における確率の極限〜杏林大学2023年医学部第1問後編〜確率漸化式と極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
複数の玉が人った袋から玉を 1 個取り出して袋に戻す事象を考える。どの玉も同じ確率で取り出されるものとし、nを自然数として、以下の間いに答えよ。
(1) 袋の中に赤玉 1 個と黒玉 2 個が入っている。この袋の中から玉を 1 個取り出し、取り出した玉と同じ色の玉をひとつ加え、合計 2 個の玉を袋に戻すという試行を繰り返す。n回目の試行において赤玉が取り出される確率をpnとすると、p2=, p3=
( 2 )袋の中に赤玉 3 個と黒玉 2 個が人っている。この袋の中から玉を 1 個取り出し、赤玉と黒玉を 1 個ずつ、合計 2 個の球を袋に戻す試行を繰り返す。n回目の試行において赤玉が取り出される確率をpnとすると、次式が成り立つ。
p2=オカキク, p3=ケコサシ
n回目の試行開始時点で袋に人っている玉の個数MnMn=n+であり、この時点で袋に入っていると期待される赤玉の個数RnRn=Mn×Pnと表される。n回目の試行において、黒玉が取り出された場合にのみ、試行後の赤玉の個数が施行前と比べて個増えるため、n+ 1 回目の試行開始時点で袋に入っていると期待される赤玉の個数はRn+1=Rn+(1Pn)×となる。したがって、
Pn+1=n+n+×Pn+1n+
が成り立つ。このことから、(n+3)×(n+)×(Pn)がnに依らず一定となる事が分かり、limnPn=と求められる。

2023杏林大学医過去問
この動画を見る 

無題

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
ax+by=4
ax2+by2=2
ax3+by3=6
ax4+by4=38
ax5+by5=◻

これを解け.
この動画を見る 

確率漸化式 特性方程式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)正三角形ABCの頂点を1秒ごとに無作為に必ず隣の頂点に移動する虫がいる。虫がはじめ頂点Aにいる時、n秒後に頂点Aにいる確率を求めよ。
(2)2,3,5,7,9の数字が書かれたカードが各1枚入った箱がある。箱から無作為に1枚取り出し数字をメモしてカードは箱に戻す。これをn回繰り返したときにメモされた数字の合計が奇数である確率を求めよ。
この動画を見る 

階乗の方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
(x21)!x21=23!のとき
x=?
この動画を見る 

【数学B/数列】an+1=pan+q型の漸化式(特性方程式)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次のように定義される数列{an}の一般項anを求めよ。
a1=2,  an+1=3an2
この動画を見る 
PAGE TOP preload imagepreload image