福田の数学・入試問題解説〜東北大学2022年理系第2問〜4次関数の極値と最小値 - 質問解決D.B.(データベース)

福田の数学・入試問題解説〜東北大学2022年理系第2問〜4次関数の極値と最小値

問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{2}}}\ aを実数とし、実数xの関数f(x)=(x^2+3x+a)(x+1)^2を考える。\\
(1)f(x)の最小値が負となるようなaのとりうる値の範囲を求めよ。\\
(2)a \lt 2のとき、f(x)は2つの極小値をもつ。このときf(x)が極小となる\\
xの値を\alpha_1,\alpha_2(\alpha_1 \lt \alpha_2)とする。f(\alpha_1) \lt f(\alpha_2)を示せ。\\
(3)f(x)がx \lt \betaにおいて単調減少し、かつ、x=\betaにおいて最小値をとるとする。\\
このとき、aのとりうる値の範囲を求めよ。
\end{eqnarray}
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{2}}}\ aを実数とし、実数xの関数f(x)=(x^2+3x+a)(x+1)^2を考える。\\
(1)f(x)の最小値が負となるようなaのとりうる値の範囲を求めよ。\\
(2)a \lt 2のとき、f(x)は2つの極小値をもつ。このときf(x)が極小となる\\
xの値を\alpha_1,\alpha_2(\alpha_1 \lt \alpha_2)とする。f(\alpha_1) \lt f(\alpha_2)を示せ。\\
(3)f(x)がx \lt \betaにおいて単調減少し、かつ、x=\betaにおいて最小値をとるとする。\\
このとき、aのとりうる値の範囲を求めよ。
\end{eqnarray}
投稿日:2022.03.18

<関連動画>

【数Ⅱ】図形と方程式:5分で学ぶファクシミリ論法

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
教材: #チャート式#黄チャートⅡ・B#その他(中高教材)
指導講師: 理数個別チャンネル
問題文全文(内容文):
ファクシミリ論法を5分で解説!
この動画を見る 

福田のわかった数学〜高校2年生011〜不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 不等式の証明\\
|x| \leqq 1,|y| \leqq 1のとき、不等式\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\\
0 \leqq x^2+y^2-2x^2y^2+2xy\sqrt{1-x^2}\sqrt{1-y^2} \leqq 1\\
が成り立つことを示せ。\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校2年生087〜三角関数(26)2変数関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(26) 2変数関数の最大最小\\
\alpha,\betaは0以上2\piよりこの範囲を動く。\\
\sqrt3\sin\beta-\cos\alpha\cos\beta\\
の最大値最小値を求めよ。
\end{eqnarray}
この動画を見る 

福田の数学・入試問題解説〜東北大学2022年理系第4問〜2つの直線に接し互いに外接する2つの円の性質

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{4}}}\ xy平面の第1象限内において、直線l:y=mx (m \gt 0)とx軸の両方に\\
接している半径aの円をCとし、円Cの中心を通る直線y=tx (t \gt 0)を考える。\\
また、直線lとx軸、および、円Cの全てにそれぞれ1点で接する円の半径をbとする。\\
ただし、b \gt aとする。\\
(1)mを用いてtを表せ。\\
(2)tを用いて\frac{b}{a}を表せ。\\
(3)極限値\lim_{m \to +0}\frac{1}{m}(\frac{b}{a}-1)を求めよ。
\end{eqnarray}
この動画を見る 

【数Ⅱ】複素数と方程式:3次方程式x³-x²+2x-3=0の3つの解をα,β,γとするとき、次の式の値を求めよう。

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
3次方程式x³-x²+2x-3=0の3つの解をα,β,γとするとき、次の式の値を求めよう。
(1)α²+β²+γ²
(2)α³+β³+γ³
(3)(1/α)+(1/β)+(1/γ)
(4)(1-α)(1-β)(1-γ)
この動画を見る 
PAGE TOP