福田のおもしろ数学505〜フィボナッチ数列の性質 - 質問解決D.B.(データベース)

福田のおもしろ数学505〜フィボナッチ数列の性質

問題文全文(内容文):

フィボナッチ数列$\{f_n\}$

$f_1=f_2=1,f_{n+2}=f_{n+1}+f_n$

に対し、

$f_m・f_n=mn$

を満たす自然数の組$(m,n)$をすべて求めて下さい。
    
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

フィボナッチ数列$\{f_n\}$

$f_1=f_2=1,f_{n+2}=f_{n+1}+f_n$

に対し、

$f_m・f_n=mn$

を満たす自然数の組$(m,n)$をすべて求めて下さい。
    
投稿日:2025.05.21

<関連動画>

【高校数学】 数B-58 等差数列とその和②

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①初項3,公差4の等差数列において,47となる項は第何項か求めよう.

②$4,k,6k$が等差数列であるとき,$k$の値を求めよう.

③第10項が31,第25項が76である等差数列$\{a_n \}$の一般項を求めよう.
この動画を見る 

お茶の水女子大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3x^2-6x+2=0$の2つの解を$\alpha,\beta$
$A_{n}=(\alpha^{-n}+\beta^{-n})(\alpha+\beta)^n$

(1)
$A_{1},A_{2}$の値を求めよ

(2)
$A_{n}$はすべての自然数$n$について整数であることを示せ

出典:2009年お茶の水女子大学 過去問
この動画を見る 

東海大(医)漸化式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
東海大学過去問題
$a_1=0,a_{n+1=2a_n+n^2}$
一般項$a_n$を求めよ。
この動画を見る 

【短時間でマスター!!】階差数列の求め方を解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
数学2B
階差数列
$5,11,23,41,65,95,\cdots$の一般項は?
この動画を見る 

【数B】【数列】自然数の式の証明3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
$n$は自然数とする。
$6^n+4= (5+1)^n+4$と変形することで、$6^n+4$が$5$の倍数であることを、二項定理を利用して証明せよ。
この動画を見る 
PAGE TOP