福田の数学〜早稲田大学2024年人間科学部第7問〜内サイクロイド曲線の長さ - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2024年人間科学部第7問〜内サイクロイド曲線の長さ

問題文全文(内容文):
$\Large\boxed{7}$ $n$を2以上の自然数とする。座標平面において、原点を中心とする半径$n$の円$C_n$の内側を半径1の円$C$が滑らずに転がるとき、円$C$上の定点Pの軌跡について考える。時刻$t$において、2つの円$C$と$C_n$は点($n\cos t$, $n\sin t$)で接している。
また、時刻$t$=0 において、点Pは点($n$, 0)にある。$t$が0≦$t$≦$\displaystyle\frac{2\pi}{n}$ の範囲を動くとき、点Pの軌跡の長さを$L_n$とする。このとき、$L_2$=$\boxed{\ \ テ\ \ }$である。また、$\displaystyle\lim_{n \to \infty}L_n$=$\boxed{\ \ ト\ \ }$である。
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{7}$ $n$を2以上の自然数とする。座標平面において、原点を中心とする半径$n$の円$C_n$の内側を半径1の円$C$が滑らずに転がるとき、円$C$上の定点Pの軌跡について考える。時刻$t$において、2つの円$C$と$C_n$は点($n\cos t$, $n\sin t$)で接している。
また、時刻$t$=0 において、点Pは点($n$, 0)にある。$t$が0≦$t$≦$\displaystyle\frac{2\pi}{n}$ の範囲を動くとき、点Pの軌跡の長さを$L_n$とする。このとき、$L_2$=$\boxed{\ \ テ\ \ }$である。また、$\displaystyle\lim_{n \to \infty}L_n$=$\boxed{\ \ ト\ \ }$である。
投稿日:2024.05.08

<関連動画>

福田の数学〜慶應義塾大学2021年医学部第1問(2)〜回転体の体積と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#慶應義塾大学#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)0 \lt \alpha \lt 1,m \gt 0とする。曲線y=x^{\alpha}-mx(x \geqq 0)とx軸で囲まれた図形\\
をx軸の周りに1回転させてできる回転体の体積をVとする。mを固定してa \to +0\\
とするときのVの極限値をmの式で表すと、\lim_{a \to +0}V=\boxed{\ \ (え)\ \ }となる。\\
また、\alphaを固定してm \to \inftyとするときm^3Vが0でない数に収束するならば\\
\alpha=\boxed{\ \ (お)\ \ }である。
\end{eqnarray}

2021慶應義塾大学医学部過去問
この動画を見る 

大学入試問題#148 京都大学(1972) 積分と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x \gt 0$
$F(x)=\displaystyle \int_{0}^{x}\displaystyle \frac{t}{(t+1)(t+3)}dt$のとき
$\displaystyle \lim_{ x \to \infty }(F(x)-log\ x)$を求めよ。

出典:1972年京都大学 入試問題
この動画を見る 

大学入試問題#490「よくみる形」 信州大学後期(2015) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ#大阪市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int x(log\ x)^2 dx$

出典:2015年信州大学後期 入試問題
この動画を見る 

大学入試問題#358「チャートの例題に載ってもいいのかな?」 青山学院大学(2010) #定積分 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ a \to \infty } \displaystyle \int_{1}^{0}(\displaystyle \frac{x+1}{\sqrt{ x^2+2x }}-1)dx$

出典:2010年青山学院大学 入試問題
この動画を見る 

12神奈川県教員採用試験(数学:10番 x軸回転体)

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\boxed {10}$ y=logx,、x軸、x=eで囲まれた図形をx軸を中心とする回転体の体積Vを求めよ。
この動画を見る 
PAGE TOP