名古屋大・慶応(医)整数問題 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

名古屋大・慶応(医)整数問題 Mathematics Japanese university entrance exam

問題文全文(内容文):
'03名古屋大学過去問題
nを自然数とするとき、$m \leqq n$でmとnの最大公約数が1となる自然数mの個数をf(n)とする。
(1)f(15)を求めよ。
(2)p,qが異なる素数のときf(pq)

'01慶応義塾大学過去問題
$\sqrt{n^2+n+34}$が整数となる自然数n
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'03名古屋大学過去問題
nを自然数とするとき、$m \leqq n$でmとnの最大公約数が1となる自然数mの個数をf(n)とする。
(1)f(15)を求めよ。
(2)p,qが異なる素数のときf(pq)

'01慶応義塾大学過去問題
$\sqrt{n^2+n+34}$が整数となる自然数n
投稿日:2018.11.01

<関連動画>

【数A】確率:確率の最大

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
さいころを1000回投げるとき、1の目がちょうどk回出る確率を$P_k$とする。
$P_k$が最大となるkを求めよ。
この動画を見る 

整数問題 青山学院

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2+5y^2 = 21$を満たす
整数x,yの組をすべて求めよ(x>y)

青山学院高等部
この動画を見る 

大学入試問題#869「次数は分子の方が高いのね」 #玉川大学(2022) #整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
問題文全文(内容文):
$\displaystyle \frac{12n^2+13n+51}{3n+1}$が整数となるような整数$n$をすべて求めよ。

出典:2022年玉川大学 入試問題
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第3問〜複雑な反復試行と条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 最初に袋の中に白玉が1個入っている。次の規則に従って、1回の操作につき\\
白玉または赤玉を1個ずつ加えていく。\\
・1回目の操作では、コインを投げ、表が出たときには赤玉を袋の中に1個加\\
え、裏が出たときには白玉を袋の中に1個加える。\\
・2回目以降の操作では、コインを投げ、表が出たときには赤玉を袋の中に1個\\
加え、裏が出たときには袋から玉を1個無作為に取り出し、その色を見てから\\
袋に戻し、さらに同じ色の玉を袋の中に1個加える。\\
(1) 2回目の操作を終えたとき、袋の中に白玉がちょうど2個入っている確率は\\
\boxed{\ \ サ\ \ }である。\\
(2) 3回目の操作を終えたとき、コインの表が2回、裏が1回出ていたという条件\\
の下で、袋の中に白玉がちょうど2個入っている条件つき確率は\boxed{\ \ シ\ \ }である。\\
以下、kは2以上の整数とし、k回目の操作を終えたときを考える。\\
(3)袋の中に白玉のみが入っている確率は\boxed{\ \ ス\ \ }である。\\
(4)1回目の操作で赤玉を加えたという条件の下で、袋の中に白玉がちょうどk個\\
入っている条件つき確率は\boxed{\ \ セ\ \ }である。\\
(5)袋の中に白玉がちょうどk個入っている確率は\boxed{\ \ ソ\ \ }である。
\end{eqnarray}

2022慶應義塾大学理工学部過去問
この動画を見る 

福田の数学〜東京大学2023年理系第6問〜線分の先端の可動範囲と関節を加えたときの可動範囲(PART1)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ Oを原点とする座標空間において、不等式|x|≦1, |y|≦1, |z|≦1の表す立方体を考える。その立方体の表面のうち、z<1を満たす部分をSとする。
以下、座標空間内の2点A,Bが一致するとき、線分ABは点Aを表すものとし、その長さを0と定める。
(1)座標空間内の点Pが次の条件(i),(ii)をともに満たすとき、点Pが動きうる範囲Vの体積を求めよ。
(i)OP≦$\sqrt 3$
(ii)線分OPとSは、共有点をもたないか、点Pのみを共有点にもつ。
(2)座標空間内の点Nと点Pが次の条件(iii),(iv),(v)をすべて満たすとき、点Pが動きうる範囲Wの体積を求めよ。必要ならば、$\sin\alpha$=$\frac{1}{\sqrt 3}$を満たす実数α(0<α<$\frac{\pi}{2}$)を用いてよい。
(iii)ON+NP≦$\sqrt 3$
(iv)線分ONとSは共有点を持たない。
(v)線分NPとSは、共有点を持たないか、点Pのみを共有点を持つ。

2023東京大学理系過去問
この動画を見る 
PAGE TOP