どってことない指数方程式 - 質問解決D.B.(データベース)

どってことない指数方程式

問題文全文(内容文):
これを解け.
$(\sqrt[4]{125}-\sqrt[4]{0.2})^x=51.2$
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$(\sqrt[4]{125}-\sqrt[4]{0.2})^x=51.2$
投稿日:2021.05.27

<関連動画>

【小学校の学習範囲から始まって】整数:市川高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$A-2B-2G+L=2021$のとき,自然数の組$(A,B)$をすべて求めよ.
※$G$は1でない自然数とする.

市川高校過去問
この動画を見る 

福田の数学〜一橋大学2023年文系第1問〜コンビネーションの等式を満たす自然数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ nを2以上20以下の整数、kを1以上n-1以下の整数とする。
${}_{n+2}C_{k+1}$=2(${}_nC_{k-1}$+${}_nC_{k+1}$)
が成り立つような整数の組(n, k)を求めよ。

2023一橋大学文系過去問
この動画を見る 

【知っ得…!】整数:明治大学付属中野高等学校~全国入試問題解法

単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ある自然数nは、正の約数を3個だけ持ち、その約数の総和が871である。この自然数を求めよ。$
この動画を見る 

慶應義塾大(薬)n進法の基本

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\overbrace{210210210・・・・・・210_{(3)} }^{3n桁}$
$3$進法で表記された$210$を繰り返す$3n$桁の数を$十$進法にして$n$の式で表せ.

2021慶應(薬)過去問
この動画を見る 

名古屋市立(医)放物線と円 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^2$上の点$(a,a^2)$を中心とし、この放射線に接するような円が存在するための$a$の条件は?

出典:名古屋市立大学 過去問
この動画を見る 
PAGE TOP