どってことない指数方程式 - 質問解決D.B.(データベース)

どってことない指数方程式

問題文全文(内容文):
これを解け.
$(\sqrt[4]{125}-\sqrt[4]{0.2})^x=51.2$
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$(\sqrt[4]{125}-\sqrt[4]{0.2})^x=51.2$
投稿日:2021.05.27

<関連動画>

基本問題 明治大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
明治大学過去問題
$ab_{(6)}=123_{(a)}$
a,bの値を求めよ
この動画を見る 

気付けば一瞬!!2つの直角二等辺三角形の面積の和

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2つの直角二等辺三角形の面積の和=?
*図は動画内参照
この動画を見る 

福田の数学〜効率よく数えることが大切〜慶應義塾大学2023年環境情報学部第4問〜移動する2点が接触しない確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
xy平面上でx座標もリ座標も整数である点を格子点という。この格子点上を次のように点 A と点 B が移動する。
・点 A は、時刻t= 0 において原点 O にあり、時刻tが 1 増えるごとに、x軸正方向に 1 あるいはy軸正方向に 1 のいずれかに等確率$\frac{1}{2}$で移動する。
・点 B は、時刻t= 0 において点( 1 , I) にあり、時刻 t が 1 増えるごとに、x軸正方向に 1 あるいはx軸負方向に 1 あるいはy軸正方向に 1 あるいはy軸負方向に 1のいずれかに等確率$\frac{1}{4}$で移動する。
ここで、時刻 t= k(k= 0 , 1 , 2 , 3 ,・・・)以前に点 A と点 B が一度も接触しない(同じ時刻に同じ座標を取らない)確率を P (k)とする。
(1)k0,1,2のとき、P(0)=1、P(1)=$\dfrac{\fbox{ア}}{\fbox{イ}}$,P(2)=$\dfrac{\fbox{ウ}}{\fbox{エ}}$である。
(2)k=3のとき、
(a)点 A が点( I , 0 )と点( 2 , 0 )を経由して点( 3 , 0 )に移動する場合、 t=3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{オ}$通り。 t=3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{カ}$通り。
(b) 点 A が点( I , 0 )と点( 2 , 0 )を経由して点( 2 , l) に移動する場合、 t=3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{キ}$通り。 3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{ク}$通り。
(c) 点 A が点( 1 , 0 )と点( 1 , 1) を経由して点( 2 , 1 )に移動する場合、 t=3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{ケ}$通り。 t=3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{コ}$通り。
(d) 点 A が点( 0 , 1) と点( 1 , 1) を経由して点( 2 , 1) に移動する場合、 t= 3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{ケ}$通り。 t=3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{コ}$通り。
であるから、$P(3)=\dfrac{\fbox{サ}}{\fbox{シ}}$である。

2023慶應義塾大学環境情報学部過去問
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年IA第3問〜条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第3問}$
中にくじが入っている箱が複数あり、各箱の外見は同じであるが、当たりくじ
を引く確率は異なっている。くじ引きの結果から、どの箱からくじを引いた可能
性が対価を、条件付き確率を用いて考えよう。

(1)当たりくじを引く確率が$\displaystyle \frac{1}{2}$である箱Aと、当たりくじを引く確率が$\displaystyle \frac{1}{3}$
である箱$B$の二つの箱の場合を考える。

$(\textrm{i})$各箱で、くじを1本引いてはもとに戻す試行を3回繰り返したとき
箱Aにおいて、3回中ちょうど1回当たる確率は$\displaystyle \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$ $\cdots$①
箱Bにおいて、3回中ちょうど1回当たる確率は$\displaystyle \frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$ $\cdots$②
である。

$(\textrm{ii})$まず、AとBのどちらか一方の箱をでたらめに選ぶ。次にその選んだ箱
において、くじを1本引いてはもとに戻す試行を3回繰り返したところ、3
回中ちょうど1回当たった。このとき、箱Aが選ばれる事象をA、箱Bが
選ばれる事象をB、3回中ちょうど1回当たる事象をWとすると
$P(A \cap W)=\displaystyle \frac{1}{2}×\displaystyle \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}, P(B \cap W)=\displaystyle \frac{1}{2}×\displaystyle \frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$
である。$P(W)=P(A \cap W)+P(B \cap W)$であるから。3回中ちょうど1
回当たった時、選んだ箱がAである条件付き確率$P_W(A)$は$\displaystyle \frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}$と
なる。また、条件付き確率は$P_W(B)$は$\displaystyle \frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$となる。
(2)(1)の$P_W(A)$と$P_W(B)$について、次の事実(*)が成り立つ。

事実(*)
$P_W(A)$と$P_W(B)$の$\boxed{\boxed{\ \ ス\ \ }}$は、①の確率と②の確率の$\boxed{\boxed{\ \ ス\ \ }}$
に等しい。

$\boxed{\boxed{\ \ ス\ \ }}$の解答群
⓪和 ①2乗の和 ②3乗の和 ③比 ④積

(3)花子さんと太郎さんは事実(*)について話している。
花子:事実(*)はなぜ成り立つのかな?
太郎:$P_W(A)$と$P_W(B)$を求めるのに必要な$P(A \cap W)$と$P(B \cap W)$
の計算で、①,②の確率に同じ数$\displaystyle \frac{1}{2}$をかけているからだよ。
花子:なるほどね。外見が同じ三つの箱の場合は、同じ数$\displaystyle \frac{1}{3}$をかける
ことになるので、同様のことが成り立ちそうだね。

当たりくじを引く確率が、$\displaystyle \frac{1}{2}$である箱$A$、$\displaystyle \frac{1}{3}$である箱$B$、$\displaystyle \frac{1}{4}$である箱
$C$の三つの箱の場合を考える。まず、$A,B,C$のうちどれか一つの箱
をでたらめに選ぶ。次にその選んだ箱において、くじを1本引いては
もとに戻す試行を3回繰り返したところ、3回中ちょうど1回当たった。
このとき、選んだ箱がAである条件付き確率は$\displaystyle \frac{\boxed{\ \ セソタ\ \ }}{\boxed{\ \ チツテ\ \ }}$となる。

(4)花子:どうやら箱が三つの場合でも、条件付き確率の$\boxed{\boxed{\ \ ス\ \ }}$は各箱で
3回中ちょうど1回当たりくじを引く確率の$\boxed{\boxed{\ \ ス\ \ }}$になっている
みたいだね。
太郎:そうだね。それを利用すると、条件付き確率の値は計算しなくて
も、その大きさを比較することができるね。

当たりくじを引く確率が、$\displaystyle \frac{1}{2}$である箱$A$、$\displaystyle \frac{1}{3}$である箱$B$、$\displaystyle \frac{1}{4}$である箱
$C$、$\displaystyle \frac{1}{5}$である箱$D$の四つの箱の場合を考える。まず、$A,B,C,D$のうち
どれか一つの箱をでたらめに選ぶ。次にその選んだ箱において、くじを
1本引いてはもとに戻す試行を3回繰り返したところ、3回中ちょうど
1回当たった。このとき、条件付き確率を用いて、どの箱からくじを
引いた可能性が高いかを考える。可能性が高い方から順に並べると
$\boxed{\boxed{\ \ ト\ \ }}$となる。
$\boxed{\boxed{\ \ ト\ \ }}$の解答群
⓪$A,B,C,D$
①$A,B,D,C$
②$A,C,B,D$
③$A,C,D,B$
④$A,D,B,C$
⑤$B,A,C,D$
⑥$B,A,D,C$
⑦$B,C,A,D$
⑧$B,C,D,A$

2021共通テスト過去問
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\vert (n-1)(n-3)(n-4)(n^6)+5 \vert$が素数となる整数$n$を求めよ.
この動画を見る 
PAGE TOP