福田の数学〜京都大学2023年理系第1問(1)〜定積分の計算 - 質問解決D.B.(データベース)

福田の数学〜京都大学2023年理系第1問(1)〜定積分の計算

問題文全文(内容文):
今回は京都大学2023年理系第1問(1)。定積分の計算の問題。
$\int_1^4 \sqrt{x}\log (x^2)dx$を求めよ

2023京都大学理系過去問
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
今回は京都大学2023年理系第1問(1)。定積分の計算の問題。
$\int_1^4 \sqrt{x}\log (x^2)dx$を求めよ

2023京都大学理系過去問
投稿日:2023.03.15

<関連動画>

この積分は解けませんでした。 By Picmin3daisukiさん

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$I=\displaystyle \int_{1}^{2} 2^{2^x} dx$のとき
$\displaystyle \int_{1}^{2} 2^{2x}log(2x)dx$を$I$を用いて表せ

(2)
$I=\displaystyle \int_{1}^{2} (2^{2^x}+2^{(2x+1)}log\ x) dx$を求めよ
この動画を見る 

大学入試問題#354「思った以上に大変でした・・・」 弘前大学 改  #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{log\ x} \displaystyle \frac{(e^x-1)(e^x-2)}{e^x+1} dx$

出典:広前大学 入試問題
この動画を見る 

大学入試問題#215 宮崎大学(2011) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{3}\displaystyle \frac{x^2}{x(x+1)}$を計算せよ。

出典:2011年宮崎大学 入試問題
この動画を見る 

大学入試問題#216 宮崎大学(2017) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\cos^2(3x+\displaystyle \frac{\pi}{6})dx$を計算せよ。

出典:2017年宮崎大学 入試問題
この動画を見る 

大学入試問題#214 徳島大学(2014) 定積分 ウォリス積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#徳島大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\sin^4x\ \cos^2x\ dx$を計算せよ。

出典:2014年徳島大学 入試問題
この動画を見る 
PAGE TOP