【高校数学】数Ⅲ-37 2次曲線と直線③ - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-37 2次曲線と直線③

問題文全文(内容文):
①楕円$2x^2+y^2=2$と直線$y=mx+2$が接するように,
定数$m$の値を求めよ.

②直線$y=2x-2$が放物線$y^2=4x$によって切り取られる線分の
中点の座標,および長さを求めよ.
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①楕円$2x^2+y^2=2$と直線$y=mx+2$が接するように,
定数$m$の値を求めよ.

②直線$y=2x-2$が放物線$y^2=4x$によって切り取られる線分の
中点の座標,および長さを求めよ.
投稿日:2017.05.30

<関連動画>

【数C】【平面上の曲線】直角双曲線x²-y²=a² (a>0)上の点Pから、2つの漸近線に垂線PQ,PRを下ろす。このとき、PQ・PRは一定であることを証明せよ

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
直角双曲線 $x^2+y^2=a^2 \ (a \gt 0)$ 上の点$\mathrm{P}$ から、
$2$ つの漸近線に垂線$\mathrm{PQ,PR}$ を下ろす。
このとき、 $\mathrm{PQ \cdot PR}$ は一定であることを証明せよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題004〜東北大学2015年理系数学第1問

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#2次曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#東北大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
xy平面において、次の式が表す曲線をCとする。
$x^2+4y^2=1,x \gt 0, y \gt 0$
PをC上の点とする。PでCに接する直線をlとし、Pを通りlと垂直な直線を
mとして、x軸とy軸とmで囲まれてできる三角形の面積をSとする。PがC
上の点全体をうごくとき、Sの最大値とその時のPの座標を求めよ。

2015東北大学理系過去問
この動画を見る 

【数C】【平面上の曲線】長さ8の線分ABの端点Aは軸上を、 端点Bはy軸上を動くとする。(1) 線分ABを5:3に内分する点Pの軌跡を求めよ。(2) 線分ABを5:3に外分する点Qの軌跡を求めよ。

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
長さ $8$ の線分 $\mathrm{AB}$ の端点$\mathrm{A}$ は $x$ 軸上を、
端点$\mathrm{B}$ は $y$ 軸上を動くとする。

(1) 線分 $\mathrm{AB}$ を $5:3$ に内分する点 $\mathrm{P}$ の軌跡を求めよ。
(2) 線分 $\mathrm{AB}$ を $5:3$ に外分する点 $\mathrm{Q}$ の軌跡を求めよ。
この動画を見る 

数検準1級1次過去問(6番 楕円)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#平面上の曲線#2次曲線#数学検定#数学検定準1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
6⃣
楕円$x^2-4x+2y^2+12y+14=0$
の焦点の座標を求めよ。
この動画を見る 

【数Ⅲ】2次曲線:極座標をゼロから始めましょう

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
極座標を基礎から解説します
この動画を見る 
PAGE TOP