福田のわかった数学〜高校2年生052〜領域(7)領域と最大最小(3) - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生052〜領域(7)領域と最大最小(3)

問題文全文(内容文):
数学$\textrm{II}$ 領域(7) 領域と最大最小(3)
$x^2+y^2 \leqq 10, y \geqq 0$ のとき、
$2x-y$
の最大値と最小値を求めよ。
単元: #数Ⅱ#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 領域(7) 領域と最大最小(3)
$x^2+y^2 \leqq 10, y \geqq 0$ のとき、
$2x-y$
の最大値と最小値を求めよ。
投稿日:2021.09.01

<関連動画>

福田の一夜漬け数学〜図形と方程式〜円の方程式(9)外から引いた接線(中心が原点以外の場合)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#点と直線#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$(x+2)^2+(y-2)^2=10$ の接線で、点(2,4)を通るものを求めよ。
また、接点の座標を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題083〜東北大学2018年度理系第1問〜直線の通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ xy平面上における2つの放物線C:y=$(x-a)^2+b$, D:y=$-x^2$を考える。
(1)CとDが異なる2点で交わり、その2交点のx座標の差が1となるように実数a,bが動くとき、Cの頂点(a, b)の軌跡を図示せよ。
(2)実数a, bが(1)の条件を満たしながら動くとき、CとDの2交点を結ぶ直線が通過する範囲を定め、図示せよ。

2018東北大学理系過去問
この動画を見る 

福田の数学〜浜松医科大学2024医学部第4問〜直線に関する対称点と絶対不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#軌跡と領域#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
正方形の紙 $\alpha$ に下図のように座標軸をとり、 $2$ 点 $\mathrm{A}(0,1),$ $\mathrm{B}(-2,0)$ および、 $2$ 直線 $y=-1,$$x=2$ を定める(図は動画内参照)。以下この $2$ 直線をそれぞれ $l_1,l_2$ と表す。このとき、点 $\mathrm{A}$ を直線 $l_1$ 上の点 $\mathrm{A'}(a,-1)$ に重ねて $\alpha$ を折ったときにできる折り目の直線を $l_3(a)$ とする。ただし、 $\mathrm{A'}$ は $\alpha$ 上にとることとし、また、以下の操作はすべて $\alpha$ 上で行うこととする。以下の問いに答えよ。
$(1)$ 直線 $l_3(a)$ の方程式を、 $a$ を用いて表せ。
$(2)$ 点 $\mathrm{A}$ が直線 $l_1$ 上に位置するように $\alpha$ を折り、そのときできる折り目により、 $\alpha$ を $2$ つに分割する。このとき、点 $\mathrm{A}$ が直線 $l_1$ 上に位置するような、どのような折り方をしても、その折り目に対して常に点 $\mathrm{A}$ と同じ側にある点全体の集合の境界線の方程式を求めよ。
$(3)$ 点 $\mathrm{A}$ が直線 $l_1$ 上の点 $\mathrm{A'}$ に重なると同時に、点 $\mathrm{B}$ が直線 $l_2$ 上の点に重なるように $\alpha$ を折るとき、 $a$ の値を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学看護医療学部2025第4問〜放物線と接線の囲む面積と内積の最小値

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$k$を実数の定数とし、

座標平面上に$2$点$A(1,-3),B(-1,k)$をとる。

また、放物線$y=x^2$を$C$とする。

以下に答えなさい。

(1)点$A$から曲線$C$に引いた$2$本の接線のうち、

傾きが正の接線を$\ell_1$とし、

傾きが負の接線を$\ell_2$とするとき、

直線$\ell_1$の方程式は$y=\boxed{テ}$であり、

直線$\ell_2$の方程式は$y=\boxed{ト}$である。

また、$2$直線$\ell_1,\ell_2$のなす角を$\theta$とすると、

$\tan\theta=\boxed{ナ}$である。

ただし、$0\lt\theta\lt\dfrac{\pi}{2}$とする。

さらに、曲線$C$と$2$直線$\ell_1,\ell_2$で囲まれた

図形の面積は$\boxed{ニ}$である。

(2)点$P$が曲線$C$全体を動くときの

$\overrightarrow{PA}・\overrightarrow{PB}$の最小値を$m$とする。

このとき、$m$を$k$を用いて表すと、

$k\geqq \boxed{ヌ}$のときは$m=\boxed{ネ}$であり、

$k\lt \boxed{ヌ}$のときは、$m=\boxed{ノ}$である。

$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る 

数学諦めて7年!私文数学超苦手女子が2点を通る直線の式が暗算数秒で出せるのか?

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2点を通る直線の式 解説動画です
この動画を見る 
PAGE TOP