【数検2級】数学検定2級 問題9~問題12 - 質問解決D.B.(データベース)

【数検2級】数学検定2級 問題9~問題12

問題文全文(内容文):
問題9.整式$x^4+3x^2+3x-2$を$x^2-2x+2$で割ったときの余りを求めなさい。
問題10.xy平面上の2点A(-2,0),B(4,-3)を結んでできる線分ABを2:1に内分する点Pの座標を求めなさい。
問題11.次の計算をしなさい。
    $\log_{10}\dfrac{1}{36}+2\log_{10}\dfrac{6}{5}-\log_{10}4$
問題12.$0\leqq\theta\leqq 2\pi$のとき、次の方程式を満たす$\theta$の値を求めなさい。
    $-2\sin\theta+1=0$
チャプター:

0:00 オープニング
0:16 問題9の解き方
1:59 問題10の解き方
3:45 問題11の解き方
5:05 問題12の解き方
5:58 まとめ

単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定2級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題9.整式$x^4+3x^2+3x-2$を$x^2-2x+2$で割ったときの余りを求めなさい。
問題10.xy平面上の2点A(-2,0),B(4,-3)を結んでできる線分ABを2:1に内分する点Pの座標を求めなさい。
問題11.次の計算をしなさい。
    $\log_{10}\dfrac{1}{36}+2\log_{10}\dfrac{6}{5}-\log_{10}4$
問題12.$0\leqq\theta\leqq 2\pi$のとき、次の方程式を満たす$\theta$の値を求めなさい。
    $-2\sin\theta+1=0$
備考:【数検2級】数学検定2級 問題1~問題3
https://youtu.be/PJ-TzNwOebw

【数検2級】数学検定2級 問題4~問題8
https://youtu.be/aYMhlG67wpo

【数検2級】数学検定2級 問題9~問題12
https://youtu.be/N179SJxTbwE

【数検2級】数学検定2級 問題13~問題15
https://youtu.be/ILsHyZqKGMs
投稿日:2022.02.05

<関連動画>

練習問題28 極限値 数検 教採対応(防衛大学)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{x\to 1}\dfrac{(x-1)e^x-x^2+x}{\tan(x-1)}$を求めよ.
この動画を見る 

数検準1級1次過去問【2020年12月】6番:定積分

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定準1級
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$これを解け.

$\displaystyle \int_{0}^{\frac{3}{4}} x\ \sin 2x\ dx$
この動画を見る 

数検準1級1次(5番 積分)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$これを解け.

(1)$\displaystyle \int_{}^{} \dfrac{1}{x^2\ e^{\frac{1}{x}}}$
(2)$\displaystyle \int_{\frac{1}{2}}^{1}\dfrac{1}{x^2\ e^{\frac{1}{2}}}$
この動画を見る 

重積分⑨-6【広義積分】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$D:0\leqq x\leqq 1,0\leqq y\leqq 1$とする.
$\iint_D \ \dfrac{1}{\sqrt{xy}}\ dx \ dy$

これを解け.
この動画を見る 

#数検準1級1次-1 #定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{0}^{1} \displaystyle \frac{x}{x^4+2x^2+1} dx$

出典:数検準1級1次
この動画を見る 
PAGE TOP