【数検2級】数学検定2級 問題9~問題12 - 質問解決D.B.(データベース)

【数検2級】数学検定2級 問題9~問題12

問題文全文(内容文):
問題9.整式$x^4+3x^2+3x-2$を$x^2-2x+2$で割ったときの余りを求めなさい。
問題10.xy平面上の2点A(-2,0),B(4,-3)を結んでできる線分ABを2:1に内分する点Pの座標を求めなさい。
問題11.次の計算をしなさい。
    $\log_{10}\dfrac{1}{36}+2\log_{10}\dfrac{6}{5}-\log_{10}4$
問題12.$0\leqq\theta\leqq 2\pi$のとき、次の方程式を満たす$\theta$の値を求めなさい。
    $-2\sin\theta+1=0$
チャプター:

0:00 オープニング
0:16 問題9の解き方
1:59 問題10の解き方
3:45 問題11の解き方
5:05 問題12の解き方
5:58 まとめ

単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定2級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題9.整式$x^4+3x^2+3x-2$を$x^2-2x+2$で割ったときの余りを求めなさい。
問題10.xy平面上の2点A(-2,0),B(4,-3)を結んでできる線分ABを2:1に内分する点Pの座標を求めなさい。
問題11.次の計算をしなさい。
    $\log_{10}\dfrac{1}{36}+2\log_{10}\dfrac{6}{5}-\log_{10}4$
問題12.$0\leqq\theta\leqq 2\pi$のとき、次の方程式を満たす$\theta$の値を求めなさい。
    $-2\sin\theta+1=0$
備考:【数検2級】数学検定2級 問題1~問題3
https://youtu.be/PJ-TzNwOebw

【数検2級】数学検定2級 問題4~問題8
https://youtu.be/aYMhlG67wpo

【数検2級】数学検定2級 問題9~問題12
https://youtu.be/N179SJxTbwE

【数検2級】数学検定2級 問題13~問題15
https://youtu.be/ILsHyZqKGMs
投稿日:2022.02.05

<関連動画>

#数検準1級1次 #7

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} (1+log x)^2$ $dx$

出典:数検準1級1次
この動画を見る 

高校数学:数学検定準1級2次:問題7 関数の増減と変曲点

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#微分法#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x)=\displaystyle \frac{2x-1}{x^2-x+1}$

について、次の問いに答えなさい。
(1) $f(x)$の増減を調べ、その極値を求めなさい。また、極値をとるときのxの値も求めなさい。
(2) $xy$平面における曲線$y=f(x)$は3個の変曲点をもちます(このことを証明する必要はありません)。これらの変曲点の座標をすべて求めなさい。
この動画を見る 

#数検準1級1次-1 #定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{0}^{1} \displaystyle \frac{x}{x^4+2x^2+1} dx$

出典:数検準1級1次
この動画を見る 

数学検定について~受ける意味ある?傾向と対策は?~全国模試1位の勉強法【篠原好】

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#その他#勉強法
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
受ける意味ある?傾向と対策は?
「数学検定」についてお話しています。
この動画を見る 

20年5月数学検定準1級1次試験(数列)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数列#数列とその和(等差・等比・階差・Σ)#数学検定#数学検定準1級#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
$3a_n-2s_n=3^n(s_n=a_1+a_2+・・・+a_n)$

20年5月数学検定準1級1次試験(数列)過去問
この動画を見る 
PAGE TOP