福田の数学〜早稲田大学2023年人間科学部第5問〜部分和を使った漸化式 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2023年人間科学部第5問〜部分和を使った漸化式

問題文全文(内容文):
$\Large\boxed{5}$ 数列$\left\{a_n\right\}$の初項から第$n$項までの和$S_n$が
$S_n$=$(-1)^n$$a_n$-$\displaystyle\frac{1}{2^n}$ ($n$=1,2,3,...)
で表されるとする。$n$が偶数であるとき、
$a_n$=$\displaystyle\frac{\boxed{タ}}{\boxed{チ}}^n$
である。また、$S_1$+$S_2$+...+$S_{50}$の値は
$\frac{\boxed{ツ}}{\boxed{テ}・\boxed{ト}^{50}}$+$\frac{\boxed{ナ}}{\boxed{ニ}}$
である。ただし、$\boxed{チ}$, $\boxed{テ}$, $\boxed{ト}$, $\boxed{ニ}$はできるだけ小さな自然数とする。
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 数列$\left\{a_n\right\}$の初項から第$n$項までの和$S_n$が
$S_n$=$(-1)^n$$a_n$-$\displaystyle\frac{1}{2^n}$ ($n$=1,2,3,...)
で表されるとする。$n$が偶数であるとき、
$a_n$=$\displaystyle\frac{\boxed{タ}}{\boxed{チ}}^n$
である。また、$S_1$+$S_2$+...+$S_{50}$の値は
$\frac{\boxed{ツ}}{\boxed{テ}・\boxed{ト}^{50}}$+$\frac{\boxed{ナ}}{\boxed{ニ}}$
である。ただし、$\boxed{チ}$, $\boxed{テ}$, $\boxed{ト}$, $\boxed{ニ}$はできるだけ小さな自然数とする。
投稿日:2023.08.19

<関連動画>

大学入試問題#483「作成時間がありませんでした」 近畿大学医学部(2023) #解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#解と判別式・解と係数の関係#数列#漸化式#数B
指導講師: ますただ
問題文全文(内容文):
$x^2-x+1=0$の解を$\alpha,\beta$とする
$\alpha^9+\beta^9$の値を求めよ

出典:2023年近畿大学医学 入試問題
この動画を見る 

【数B】数列: 次の条件を満たす等差数列anの一般項を求めよ。a1+a4=12,a1+a7=18

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす等差数列anの一般項を求めよ。
a1+a4=12,a1+a7=18
この動画を見る 

『Σ』の記号の意味を理解させます

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
『$\Sigma$』の記号の意味を理解させます
この動画を見る 

横浜国大 複雑な漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_0=1$一般項を求めよ$(n$自然数$)$
$a_n=\displaystyle \sum_{k=1}^n 3^ka_{n-k}$

出典:2000年横浜国立大学 過去問
この動画を見る 

福田の数学〜無限級数の和は部分和の極限〜明治大学2023年全学部統一Ⅲ第1問(1)〜無限級数の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
無限級数

$\displaystyle \sum_{n=1}^{\infty} \log \frac{(n+1)(n+2)}{n(n+3)}$

の和を求めよ。

2023明治大学過去問
この動画を見る 
PAGE TOP