【理解深まる3分間】連立方程式:青森県高等学校~全国入試問題解法【トライ式】 - 質問解決D.B.(データベース)

【理解深まる3分間】連立方程式:青森県高等学校~全国入試問題解法【トライ式】

問題文全文(内容文):
入試問題 青森県の高等学校

グラフを利用して解を求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
y = x+6 \\
x + 2y = 6
\end{array}
\right.
\end{eqnarray}$
単元: #数学(中学生)#連立方程式#高校入試過去問(数学)#青森県公立高等学校#青森県高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 青森県の高等学校

グラフを利用して解を求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
y = x+6 \\
x + 2y = 6
\end{array}
\right.
\end{eqnarray}$
投稿日:2021.04.09

<関連動画>

連立方程式 法政ニ 2022年入試問題解説51問目

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式
$
\begin{eqnarray}
\left\{
\begin{array}{l}
37x - 53y = 2 \\
17x + 19y = 1
\end{array}
\right.
\end{eqnarray}
$
$x:y=?$

2022法政大学第二高等学校
この動画を見る 

【高校受験対策】数学-死守18

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#平方根#2次方程式#比例・反比例#確率#点と直線
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$15 - 9\div 3$を計算しなさい.

②$\dfrac{2}{7}\times \dfrac{3}{4}$を計算しなさい .

③$-5-3+7$を計算しなさい.

④$(3x - 2y) + 5(x - 4y)$ を計算しなさい.

⑤$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=2 \\
x+2y=-6
\end{array}
\right.
\end{eqnarray}$
を解きなさい.

⑦$\sqrt{15}\times \sqrt6 +\sqrt{10}$を計算しなさい.

⑧$x^2-2x-63$を因数分解しなさい.

⑧方程式$ 2x ^ 2 + 9x + 8 = 0$ を解きなさい.

⑨右の図のように,平行な2直線$\ell,m$があり,直線上に2点$A,B$
直線$m$上に2点$C,D$がある.
$AB=BC, \angle BCD = 42°$のとき,$\angle BAC$の大きさを求めなさい.

⑩下の表は,$y$が$x$に反比例する関係を表したものです.
表のⒶにあてはまる数を求めなさい.

⑪数字を書いた3枚のカード$①,②,③$が袋$A$の中に,
数字を書いた5枚のカード$①,②,③,④,⑤$が袋$B$の中に入っています.
それぞれの袋からカードを1枚ずつ取り出すとき,
その2枚のカードに書いてある数の積が奇数になる確率を求めなさい.

図は動画内参照
この動画を見る 

福田の1.5倍速演習〜合格する重要問題050〜一橋大学2017年度文系第2問〜連立方程式の整数解

アイキャッチ画像
単元: #連立方程式#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 連立方程式$\\$
$\left\{\begin{array}{1}
x^2=yz+7\\
y^2=zx+7\\
z^2=xy+7\\
\end{array}\right.\\$ 
を満たす整数の組(x,y,z)でx $\leqq$ y $\leqq$ zとなるものを求めよ。

2017一橋大学文系過去問
この動画を見る 

【3分で数学が好きになる!?】連立方程式:中央大学附属高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#連立方程式#高校入試過去問(数学)#中央大学附属高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 中央大学附属高等学校

連立方程式を求めなさい。
$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{x+y}{xy } = 10 \\
\displaystyle \frac{1}{ x }- \displaystyle \frac{1}{ y }=6
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

#63 #数検1級1次過去問 #連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: ますただ
問題文全文(内容文):
$xy \neq 0$のとき、次の連立方程式を解け。
$\begin{eqnarray}
\left\{
\begin{array}{l}
(x+y)(x^2+y^2)=\displaystyle \frac{40}{3}xy \\
(x^2+y^2)(x^4-y^4)=\displaystyle \frac{800}{9}x^2y^2
\end{array}
\right.
\end{eqnarray}$

出典:数検1級1次
この動画を見る 
PAGE TOP