福田のおもしろ数学269〜三角形における三角関数の性質の証明その2 - 質問解決D.B.(データベース)

福田のおもしろ数学269〜三角形における三角関数の性質の証明その2

問題文全文(内容文):
$\triangle \mathrm{ABC}$ において、$ \cos A \cos B \cos C \leqq $$\displaystyle \frac{1}{8} \cdots ①$ が成り立つことを証明して下さい。
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\triangle \mathrm{ABC}$ において、$ \cos A \cos B \cos C \leqq $$\displaystyle \frac{1}{8} \cdots ①$ が成り立つことを証明して下さい。
投稿日:2024.09.27

<関連動画>

18神奈川県教員採用試験(数学:微分)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#微分法と積分法#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$|x^3-3x^2-9x|-m=0$が異なる定数解を4個もつようにmの値の範囲を求めよ。
この動画を見る 

福田の数学〜立教大学2025理学部第4問〜整式がある数の倍数であることの証明

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$

$n$を$2$以上の自然数とする。次の問いに答えよ。

(1)$n^3-n$は$6$のばいすうであることを示せ。

(2)$n^4+2n^3-n^2-2n$は$24$の倍数であることを示せ。

(3)$n$に関する数学的帰納法を用いて、

$n^5+4n$は$5$の倍数であることを示せ。

(4)$n^9+2n^8-n^7-2n^6+4n^5+8n^4-4n^3-8n^2$は

$120$の倍数であることを示せ。

$2025$年立教大学理学部過去問題
この動画を見る 

【高校数学】  数Ⅰ-82  三角比⑦

アイキャッチ画像
単元: #数Ⅰ#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の式のとりうる値の範囲を求めよう。

①$\cos \theta+2(0° \leqq \theta \leqq 180°)$

②$3\sin \theta-1(0° \leqq \theta \leqq 180°)$

③$\sqrt{ 2 }\sin \theta+3(45° \leqq \theta \leqq 120°)$

④$\sqrt{ 3 }\tan \theta-3(30° \leqq \theta \lt 60°)$
この動画を見る 

【高校数学】数Ⅰ-39 2次関数⑤(平方完成の練習編)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の2次式を平方完成しよう。
①$y=x^2+2x-1$
②$y=2x^2-8x-6$
③$y=x^2-4x$
④$y=-2x^26x+3$
⑤$y=3x^2-5x+2$
⑥$y=\displaystyle \frac{1}{3}x^2+4x$
この動画を見る 

【高校数学】数Ⅰ-23 絶対値を含む方程式・不等式③(続 応用編)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\sqrt{ x^2 }+\sqrt{ x^2-4x+4 }=4$
②$|x|-2|x+3|\geqq 0$
この動画を見る 
PAGE TOP