大学入試問題#848「何種類か解法がありそう」 #宮崎大学(2023) #定積分 - 質問解決D.B.(データベース)

大学入試問題#848「何種類か解法がありそう」 #宮崎大学(2023) #定積分

問題文全文(内容文):
$\displaystyle \int_{\frac{1}{\sqrt{ 3 }}}^{\sqrt{ 3 }} \displaystyle \frac{1+x}{x(1+x^2)} dx$

出典:2023年宮崎大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{1}{\sqrt{ 3 }}}^{\sqrt{ 3 }} \displaystyle \frac{1+x}{x(1+x^2)} dx$

出典:2023年宮崎大学
投稿日:2024.06.13

<関連動画>

大学入試問題#836「このタイプの問題ばかり探していますw」 #長崎大学(2024) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \displaystyle \frac{x^2-x^4}{1+e^x}dx$

出典:2024年長崎大学
この動画を見る 

【理数個別の過去問解説】2020年度横浜国立大学 数学 第2問(1)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大学2020年度大問2(1)
次の問いに答えよ。
(1)実数A,B,C,Dに対して、複素数zを
$z=\dfrac{A+\sqrt5 Bi}{C+\sqrt5 Di}$
で定める。ただし、$C+\sqrt5 Di\neq 0$とする。このとき、$x=x+yi$をみたす実数x,yをA,B,C,Dの式で表せ。
(2)次をみたす整数A,B,C,Dを求めよ。
$\dfrac{16+\sqrt5 i}{29}=\dfrac{A+\sqrt5 Bi}{C+\sqrt5 Di}$
$AD-BC=-1$
$D\gt 0$
この動画を見る 

大学入試問題#98 千葉大学医学部(2018) 積分・極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#不定積分#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$f(x)=\displaystyle \int_{0}^{x}e^{t-x}\sin(t+x)dt$を求めよ。


(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{f(x)}{x}$を求めよ。

出典:2018年千葉大学 入試問題
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第1問(2)〜対数方程式と対称式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#対数関数#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)1ではない正の実数$x,\ y$が次の条件を満たすとする。
$\left\{\begin{array}{1}
xy=\displaystyle\frac{1}{4}\\
\displaystyle\frac{1}{\log_2x}+\displaystyle\frac{1}{\log_2y}=\frac{8}{21}
\end{array}\right.$
このとき、$x+y=\frac{\boxed{\ \ キク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}}{\boxed{\ \ コサ\ \ }}$である。

2022明治大学全統過去問
この動画を見る 

数学「大学入試良問集」【19−20 媒介変数のグラフと曲線の長さ、面積】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東邦大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$r$を正の定数とする。
$xy$平面上を時刻$t=0$から$t=\pi$まで運動する点$P(x,y)$の座標が$x=2r(t-\sin\ t\cos\ t),y=2r\ \sin^2t$であるとき、以下の問いに答えよ。
(1)
点$P$が描く曲線の概形を、$xy$平面上にかけ。

(2)
点$P$が時刻$t=0$から$t=\pi$までに動く道のり$S$は、
$S=\displaystyle \int_{0}^{\pi}\sqrt{ \left[ \dfrac{ dx }{ dt } \right]^2+\left[ \dfrac{ dy }{ dt } \right]^2 }\ dt$で与えられる。
このとき、$S$の値を求めよ。

(3)点$P$が描く曲線と$x$軸で囲まれた部分を、$x$軸の周りに1回転させてできる立体の体積を求めよ。
この動画を見る 
PAGE TOP