【数学A】確率③ これで最後の動画です(多分) - 質問解決D.B.(データベース)

【数学A】確率③ これで最後の動画です(多分)

問題文全文(内容文):
【数学A】確率問題の解き方説明動画です
-----------------
動画内の図を参照し、以下の問に答えよ
Aから3個 Bから2個 同時に出す。
黒玉が3個の確率は?
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学A】確率問題の解き方説明動画です
-----------------
動画内の図を参照し、以下の問に答えよ
Aから3個 Bから2個 同時に出す。
黒玉が3個の確率は?
投稿日:2020.06.07

<関連動画>

数学「大学入試良問集」【5−8 余事象の確率①】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#関西学院大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
偶数の目が出る確率が$\displaystyle \frac{2}{3}$であるような、目の出方にかたよりのあるサイコロが2個あり、これらを同時に投げるゲームを行う。
、これらを同時に投げるゲームを行う。
両方とも偶数の目が出たら当たり、両方とも奇数の目が出たら大当たりとする。
このゲームを$n$回繰り返すとき、次の問いに答えよ。

(1)大当たりが少なくとも1回は出る確率を求めよ。
(2)当たりまたは大当たりが少なくとも1回は出る確率を求めよ。
(3)当たりと大当たりのいずれもが少なくとも1回は出る確率を求めよ
この動画を見る 

福田の数学〜早稲田大学2023年人間科学部第1問(1)〜互いに素な整数を選ぶ確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)2,3,4,...,13の12個の整数の中から異なる2個を無作為に取り出したとき、それら2個の整数が互いに素となる確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
この動画を見る 

福田の数学〜青山学院大学2023年理工学部第2問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 白石と黒石を手元にたくさん用意する。表が白色、裏が黒色の硬貨1枚を用いて、机の上で以下の操作を繰り返し行う。ただし、最初の操作は机の上に石が1個もない状態から始めるものとする。
操作:効果を投げ、出た色と異なる色の石が机の上にあればその中の1個を取り除き、なければ出た色と同じ色の石を手元から机の上に1個置く。
とくに、机の上に石が1個もなければ、次の回の操作では出た色と同じ色の石を手元から机の上に1個置く。
(1)3回目の操作後に机の上に石がちょうど3個ある確率は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
(2)6回目の操作後に机の上に石がちょうど2個ある確率は$\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}$であり、石が1個もない確率は$\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ クケ\ \ }}$である。
(3)6回目の操作後に机の上にある石が2個以下であったときに、8回目の操作後に机の上にある石も2個以下である条件付き確率は$\frac{\boxed{\ \ コサ\ \ }}{\boxed{\ \ シス\ \ }}$である。
この動画を見る 

東大 確率ジャンケン

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3$人でじゃんけんをして$k$回目に$1$人の勝者が決まる確率を求めよ.
※負けた人は次以降参加しない.

1971東大過去問
この動画を見る 

福田の数学〜慶應義塾大学薬学部2025第4問〜確率と期待値と無限級数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

当たりくじが$3$本入っている$9$本のくじがある。
このくじを無作為に$1$本引き、
当たりくじかどうかを確認してから元に戻す試行を、
当たりくじが出るまで繰り返す。
当たりくじが出たときのみ得点を得ることができ、
$n$回目にの試行で当たりくじが出た場合、
得られる得点は$50n$点とする。

$n$回目に得られる得点の期待値を$E_n$とする。
ただし、$n$は自然数とする。

(1)$5$回目までに当たりくじが出る確率は$\boxed{ノ}$である。

(2)$\dfrac{E_n}{E_{n+1}}=\dfrac{10}{7}$であるとき、$n=\boxed{ハ}$である。

(3)$\displaystyle \lim_{n\to\infty}\dfrac{E_n}{E_{n+1}}$を求めると$\boxed{ヒ}$である。

(4)$\displaystyle \sum_{k=1}^{n}E_k$を$n$の式で表すと$\boxed{フ}$であり、

$\displaystyle \sum_{k=1}^{\infty}E_k$を求めると$\boxed{ヘ}$である。

ただし、$\vert r \vert \lt 1$を満たす実数$r$に対し、

$\displaystyle \lim_{n\to\infty}n \times r^n=0$が

成り立つこととする。

$2025$年慶應義塾大学薬学部過去問題
この動画を見る 
PAGE TOP