早稲田大 4次方程式 - 質問解決D.B.(データベース)

早稲田大 4次方程式

問題文全文(内容文):
$a,b$は自然数
$x^4+ax^3+(a+b)x^2+(2-a)x+1=0$
この方程式の解はすべて絶対値が1の複素数である。
$a,b$を求めよ

出典:2003年早稲田大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は自然数
$x^4+ax^3+(a+b)x^2+(2-a)x+1=0$
この方程式の解はすべて絶対値が1の複素数である。
$a,b$を求めよ

出典:2003年早稲田大学 過去問
投稿日:2019.11.27

<関連動画>

連立2元9次方程式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#2次関数#複素数と方程式#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x^4y^5+x^5y^4=810 \\
x^3y^6+x^6y^3=945
\end{array}
\right.
\end{eqnarray}$
実数解を求めよ.
この動画を見る 

成蹊大2021 3次方程式の解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+2x^2+3x+4=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^2+\beta^2,\beta^2+\delta^2,\delta^2+\alpha^2$を解にもつ3次方程式を求めよ.
2021成蹊過去問
この動画を見る 

2021 神戸大(文)複素数の累乗

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$(3+i)^n$
$n=2,3,4,5$の値と虚部の整数を$10$で割った余りを求めよ.
②$(3+i)^n$は虚数であることを示せ.($n$は自然数)

2021神戸大(文)
この動画を見る 

福田の1日1題わかった数学〜高校2年生第3回〜高次方程式と連立方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 高次方程式
$\left\{\begin{array}{1}
a^3x+a^2y+az=1\\
b^3x+b^2y+bz=1\\
c^3x+c^2y+cz=1\\
\end{array}\right.$
を解け。

ただし、$a,b,c$は異なる数で$0$でない。
この動画を見る 

i=1⁉️からくりは通常動画で❗️  #short

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
iの計算式に関して解説していきます。
この動画を見る 
PAGE TOP