大学入試問題#19 京都大学(2020) 定積分 - 質問解決D.B.(データベース)

大学入試問題#19 京都大学(2020) 定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{x}{\cos^2x}\ dx$を計算せよ。

出典:2020年京都大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{x}{\cos^2x}\ dx$を計算せよ。

出典:2020年京都大学 入試問題
投稿日:2021.09.27

<関連動画>

【数学模試解説】2022年度1月 第4回 高2K塾記述模試 全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)$AB=5,BC=7,CA=6$の三角形$ABC$がある。$\cos\angle BAC$の値と三角形$ABC$の外接円の半径を求めよ。
(2)$a$は実数の定数とする。$x$の2次方程式$x^2-2ax+5a-6=0$が異なる2つの正の解をもつようなaの値の範囲を求めよ。
(3)方程式$x^3-4x^2+8=0$を解け。
(4)$m$は実数の定数とする。座標平面における原点$O$と直線$y=mx+m+2$の距離が2より大きくなるようなmの値の範囲を求めよ。
(5)実数$x$が、$2^x+2^{-x}=3$を満たしている。$4^x+4^{-x}$の値を求めよ。
(6)方程式$\log_4(5x-1)=log_2(2x-1)$を解け。
大問2:三角関数
(1)$\sin\dfrac{\pi}{12},\cos\dfrac{\pi}{12}$の値を求めよ。
(2)$O$を原点とする$xy$平面上に$O$を中心とする半径1の円$E$があり、$E$上に3点$A(0,-1),B\left(-\dfrac{\sqrt3}{2},\dfrac{1}{2}\right), C\left(\dfrac{1}{2},-\dfrac{\sqrt3}{2}\right)$がある。また、$E$の上に点$P$をとり、$P(\cosθ,\sinθ)\left(0\leqq \theta\leqq\dfrac{\pi}{2}\right)$とするとき、$L$を$L=AP^2+BP^2+CP^2$と定める。
(i)$L$を$\theta$で表せ。
(ii)$\theta$が$0\leqq\theta\leqq\dfrac{\pi}{2}$を変化するとき、$L$の最大値、最小値とそれを与える$\theta$の値を求めよ。
大問3:場合の数
1,2,3,4,5,6,7,8,9の9枚のカードを$A,B,C$の3人に3枚ずつ配る。
(1)カードの配り方は全部で何通りあるか。
(2)$A$のカードの番号がいずれも2の倍数であるような3人への配り方は何通りあるか。
(3)$A$のカードの番号の積が3の倍数となるような3人への配り方は何通りあるか。
(4)$A,B,C$のカードの番号の積がそれぞれ6の倍数となるような3人への配り方は何通りあるか。
大問4:微分法
$a$を正の定数とし、関数$f(x)$を$f(x)=x^2-ax^2+4a-8$とする。
連立不等式$y\geqq f(x),y\leqq f(0),x\geqq 0$を満たす整数の組$(x,y)$の個数を$N(a)$とする。
(1)$a=2$のとき、$f(x)$の増減、極値を調べ、$y=f(x)$のグラフの概形をかけ。
(2)$N(2)$を求めよ。
(3)$f(x)$の極大値を$M$とする。曲線$y=f(x)$と直線$y=M$の共有点のx座標のうち、正であるものを求めよ。
(4)$a$を$\dfrac{9}{4}\lt a\lt\dfrac{5}{2}$を満たす定数とするとき、$N(a)=N(2)$となるような$a$の値の範囲を求めよ。
大問5:数列
$r$は0以外の実数とする。数列${a_n}$は、$a_1=1,a_{n+1}=ra_n (n=1,2,3,…)$を満たしている。また、この数列${a_n}$に対して、数列${b_n}$を、$b_1=-1,b_{n+1}=2b_n+a_n (n=1,2,3,…)$によって定める。
(1)数列${a_n}$の一般項を求めよ。
(2)数列${c_n}$を $c_n=\dfrac{b_n}{r^n}$ によって定める。
(i)$c_{n+1}$を$r$と$c_n$を用いて表せ。
(ii)数列${c_n}$の一般項を求めよ。
(3)$S_n=\displaystyle \sum_{k=1}^n b_k$とする。$r=2$のとき、$S_n$を最小にする正の整数$n$の値をすべて求めよ。また、$r=4$のとき、$S_n$を最小にする正の整数$n$の値をすべて求めよ。
この動画を見る 

微分の定義!慶應義塾大

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023慶応義塾大学過去問題
$f(x)=x^4$とする
f(x)のx=aにおける微分係数を定義に従って求めなさい
計算過程も記述しなさい
この動画を見る 

東京医科大 3乗根の不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt[3]{n+1}-\sqrt[3]{n}<\dfrac{1}{48}$を満たす最小の自然数nを求めよ.

東京医科大過去問
この動画を見る 

東工大 秀才栗崎 微分積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=\displaystyle \frac{1}{x}(x \gt 0)$と$y=- \displaystyle \frac{1}{x}(x \lt 0)$の接線および$x$軸を囲まれる三角形の面積の最大

出典:1975年東京工業大学 過去問
この動画を見る 

大学入試問題#270 岡山県立大学(2010) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{1+\cos\ 2x}\ dx$

出典:2010年岡山県立大学 入試問題
この動画を見る 
PAGE TOP