東北大 対数方程式 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

東北大 対数方程式 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
東北大学過去問題
連立方程式を解け
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^y = y^x \\
log_xy + log_yx = \frac{13}{6}
\end{array}
\right.
\end{eqnarray}$
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
東北大学過去問題
連立方程式を解け
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^y = y^x \\
log_xy + log_yx = \frac{13}{6}
\end{array}
\right.
\end{eqnarray}$
投稿日:2018.07.18

<関連動画>

16愛知県教員採用試験(数学:5番 対数,相加平均・相乗平均)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
5⃣$a=log_3x$ , $b=log_4y$
a+2b=3のときx+yの最小値を求めよ。
この動画を見る 

早稲田の簡単すぎる問題!満点必須です【数学 入試問題】【早稲田大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$が$\dfrac{1}{3}≦x≦9$の範囲を動くとき,関数 $f(x)=(\log_\frac{1}{3}9x)(log_\frac{1}{3}\dfrac{x}{3})$の最大値と最小値を求めよ。

早稲田大過去問
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第2問(2)〜ベクトルの列とその絶対値の評価

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#対数関数#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (2)ベクトルの列 $\overrightarrow{a_1}$, $\overrightarrow{a_2}$, ..., $\overrightarrow{a_n}$, ...を条件
$\overrightarrow{a_1}$=(1,0), $\overrightarrow{a_2}$=$\left(\frac{1}{2}, \frac{\sqrt 3}{2}\right)$, $\overrightarrow{a_{n+2}}$=$\displaystyle\frac{\overrightarrow{a_{n+1}}・\overrightarrow{a_n}}{|\overrightarrow{a_n}|^2}\overrightarrow{a_n}$
で定める。このとき$\overrightarrow{a_9}$=$\left(\frac{\boxed{イ}}{\boxed{ウエオ}}, \boxed{カ}\right)$である。また、$|\overrightarrow{a_n}|$<$10^{-25}$を満たす最小の自然数$n$は$\boxed{キク}$である。ただし、必要であれば、$\log_{10}2$=0.301を近似として用いてよい。
この動画を見る 

練習問題46 岡山大学 対数の性質を利用した不等式の証明 数検準1級 教員採用試験

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#指数関数と対数関数#対数関数#微分とその応用#学校別大学入試過去問解説(数学)#その他#数学検定#数学検定準1級#数学(高校生)#岡山大学#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
実数$a,b,$は
$0 \lt a \lt b$をみたしているとき
$(b+1)^a \lt (a+1)^b$が成り立つことを表せ。

出典:岡山大学
この動画を見る 

【高校数学】 数Ⅱ-142 常用対数②

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\log_{10}2=0.3010,\log_{10}3=0.4771$とする。

①$2^{50}$は何桁の整数か求めよう。

②$(\displaystyle \frac{1}{3})^{30}$を小数で表したとき、小数第何位に初めて0でない数字が現れるか求めよう。
この動画を見る 
PAGE TOP