【数Ⅰ】【2次関数】2次関数の点の通過 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【2次関数】2次関数の点の通過 ※問題文は概要欄

問題文全文(内容文):
次の条件を満たす放物線の方程式を求めよ。
 (1) 3点(-4,0),(-2,0),(0,-4)を通る。
 (2) 点(2,0)でx軸に接し、点(-2,12)を通る。

a,b,cの値を入力すると、関数 y=ax²+bx+c のグラフが表示されるコンピュータソフトがある。
あるa,b,cの値を入力すると、グラフは図のように表示された。
(1) a, b, c, b²-4ac, a+b+c の符号をいえ。
(2) このa,bの値を変えずに、cの値だけを変化させたとき、変わらないものを次の中からすべて選べ。
また、変わらない理由を説明せよ。
  ① グラフとx軸の共有点の個数
  ② グラフの頂点のx座標の符号
  ③ グラフの頂点のy座標の符号
チャプター:

0:00 問題1(1)の解説
2:46 問題1(2)の解説
4:41 問題2(1)の解説
10:44 問題2(2)の解説

単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす放物線の方程式を求めよ。
 (1) 3点(-4,0),(-2,0),(0,-4)を通る。
 (2) 点(2,0)でx軸に接し、点(-2,12)を通る。

a,b,cの値を入力すると、関数 y=ax²+bx+c のグラフが表示されるコンピュータソフトがある。
あるa,b,cの値を入力すると、グラフは図のように表示された。
(1) a, b, c, b²-4ac, a+b+c の符号をいえ。
(2) このa,bの値を変えずに、cの値だけを変化させたとき、変わらないものを次の中からすべて選べ。
また、変わらない理由を説明せよ。
  ① グラフとx軸の共有点の個数
  ② グラフの頂点のx座標の符号
  ③ グラフの頂点のy座標の符号
投稿日:2025.02.03

<関連動画>

【数学Ⅰ/期末テスト対策】循環小数

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
循環小数$0.\dot{ 2 }\dot{ 4 }$を分数の形で表せ。
この動画を見る 

【#6】【因数分解100問】基礎から応用まで!(51)〜(60)【解説付き】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(51)$a^2(b+c)+b^2(c+a)+c^2(a+b)+3abc$
(52)$ab(a+b)+bc(b+c)+ca(c+a)+3abc$
(53)$x^4-15x^2+9$
(54)$x^4+x^2y^2+y^4$
(55)$x^4+4y^4$
(56)$(a^2+a+1)(a^2-a+1)$
(57)$(x+1)(x-1)(x+3)(x-3)$
(58)$(x-3)^3$
(59)$(x+2)(x-2)(x-3)$
(60)$(2x^2+4xy+2y^2+2x+2y+1)(2x+2y+1)$
この動画を見る 

【高校数学】2次方程式②~判別式とは~数学界のDの意思を継ぐもの 2-8【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2次方程式解説動画です
この動画を見る 

式の値

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
(a-1)(b-1)(c-1)=abc-1
(a-2)(b-2)(c-2)=abc-2
a+b+c=?
この動画を見る 

福田の入試問題解説〜東京大学2022年文系第1問〜放物線と接線

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とする。座標平面上の放物線$y=x^2+ax+b$をCとおく。
Cは、原点で垂直に交わる2本の接線$l_1,l_2$を持つとする。
ただし、Cと$l_1$の接点$P_1$のx座標は、Cと$l_2$の接点$P_2$のx座標より小さいとする。
(1)bをaで表せ。またaの値は全ての実数をとりうることを示せ。
(2)i=1,2に対し、円$D_i$を、放物線Cの軸上に中心を持ち、点$P_i$で$l_i$
と接するものと定める。$D_2$の半径が$D_1$の半径の2倍となるとき、aの値を求めよ。

2022東京大学文系過去問
この動画を見る 
PAGE TOP