【全パターンまとめ】確率の全パターンをすべて解説!!【高校数学 数学】 - 質問解決D.B.(データベース)

【全パターンまとめ】確率の全パターンをすべて解説!!【高校数学 数学】

問題文全文(内容文):

10本のクジの中にアタリが4本ある。
同時に「3本」引くとき、少なくとも1本はアタリが出る確率は?


動画の図のような色と数字が書かれた玉が袋に入っている。
この袋から玉を1つ取り出す。
取り出した玉が赤色であった時に書かれている数が偶数である確率は?
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):

10本のクジの中にアタリが4本ある。
同時に「3本」引くとき、少なくとも1本はアタリが出る確率は?


動画の図のような色と数字が書かれた玉が袋に入っている。
この袋から玉を1つ取り出す。
取り出した玉が赤色であった時に書かれている数が偶数である確率は?
投稿日:2021.07.07

<関連動画>

【数A】【場合の数と確率】組み合わせ応用2 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
・円に内接する八角形の3個の頂点を結んで三角形を作る。
(1)八角形と一辺だけを共有する三角形は何個あるか。
(2)八角形と辺を共有しない三角形は何個あるか。

・1から20までの20個の整数から、異なる3個を選んで組を作る。
(1)奇数だけを含んでいる組は何通りできるか。
(2)奇数も偶数も含んでいる組は何通りできるか。
(3)3個の数の和が奇数となる組は何通りできるか。
この動画を見る 

福田の数学〜早稲田大学2022年社会科学部第1問〜条件付き確率と大小比較

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
ある国の国民がある病気に罹患している確率を$p$とする。
その病気の検査において、罹患者が陽性と判定される確率を$q$,
非罹患者が陽性と判定される確率を$r$とする。ただし$0 \lt p \lt 1,\ 0 \lt r \lt q$である。
さらに、検査で陽性と判定された人が罹患している確率を$s$とする。次の問いに答えよ。
(1)$s$を$p,\ q,\ r$を用いて表せ。
(2)$k$回すべて陽性と判定されれば最終的に陽性と判断される場合、最終的に陽性
と判断された人が罹患している確率を$a_k$とする。$a_k$を$p,q,r,k$を用いて表せ。
(3)$k$回のうち1回でも陽性と判定されれば最終的に陽性と判断される場合、
最終的に陽性と判断された人が罹患している確率を$b_k$とする。$b_k$を$p,q,r,k$を用いて表せ。
(4)$s,\ a_2,\ b_2$の大小関係を示せ。

2022早稲田大学社会科学部過去問
この動画を見る 

場合の数 並び替え基本2【セトリの算数がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・「equations」という単語の文字をすべて使って順列を作るとき、次の問いに答えよ。
(1)少なくとも一端に子音の文字がくるものは何通りあるか。
(2)eとaの間に文字が2つあるものは何通りあるか。

・A,B,C,D,E,Fの6文字をすべて使ってできる順列を、ABCDEFを1番目として自書式に並べるとき、次の問いに答えよ。
(1)140番目の文字列を求めよ。
(2)FBCDAEは何番目の文字列か。
この動画を見る 

福田の一夜漬け数学〜順列・組合せ(4)〜円順列(前編)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 8人が円形のテーブルに座るとき
(1)特定の2人が隣り合う並び方は何通りか。
(2)特定の2人が向かい合う並び方は何通りか。

${\Large\boxed{2}}$ 8人が次のようなテーブルに座る方法は何通りか。
(1)正方形のテーブル。各辺に2人ずつ座る。
(2)長方形のテーブル。長辺に3人、短辺に1人座る。

${\Large\boxed{3}}$ 立方体の6面に色を塗る。隣り合う面には違う色を塗る。
(1)6色で塗り分ける方法は何通りあるか。
(2)5色で塗り分ける方法は何通りあるか。
この動画を見る 

【数A】【場合の数と確率】組み合わせ応用1 ※問題文は概要欄 ※解答に誤りあり(概要欄に記載しています)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
・4個の数字0,1,2,3を使ってできる次のような自然数は何個あるか。ただし、同じ数字を重複して使ってよいものとする。
(1)3桁の自然数
(2)3桁以下の自然数
(3)123より小さい自然数

・9個の要素を持つ集合の総数を求めよ。また、Aの2個の特定の要素を含むAの部分集合の総数を求めよ。

・(1)10人を2つの部屋A,Bに入れる方法は何通りあるか。ただし10人全員が同じ部屋に入ってもよいものとする。
(2)10人を二つの組A,Bに分ける方法は何通りあるか。
(3)10人を二つの組に分ける方法は何通りあるか。
この動画を見る 
PAGE TOP