問題文全文(内容文):
$0 \leq k:$整数
$N=\displaystyle \frac{k^2+k+300}{k^3+k^2+2k+2}$が自然数となるときのすべての$k$の値の和$S$を求めよ。
出典:2024年自治医科大学
$0 \leq k:$整数
$N=\displaystyle \frac{k^2+k+300}{k^3+k^2+2k+2}$が自然数となるときのすべての$k$の値の和$S$を求めよ。
出典:2024年自治医科大学
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師:
ますただ
問題文全文(内容文):
$0 \leq k:$整数
$N=\displaystyle \frac{k^2+k+300}{k^3+k^2+2k+2}$が自然数となるときのすべての$k$の値の和$S$を求めよ。
出典:2024年自治医科大学
$0 \leq k:$整数
$N=\displaystyle \frac{k^2+k+300}{k^3+k^2+2k+2}$が自然数となるときのすべての$k$の値の和$S$を求めよ。
出典:2024年自治医科大学
投稿日:2024.08.23