大学入試問題#850「おもろいパズル」 #京都大学(2023) #有理化 #式変形 - 質問解決D.B.(データベース)

大学入試問題#850「おもろいパズル」 #京都大学(2023) #有理化 #式変形

問題文全文(内容文):
$\displaystyle \frac{55}{2\sqrt[ 3 ]{ 9 }+\sqrt[ 3 ]{ 3 }+5}$を有利化せよ

出典:2023年京都大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{55}{2\sqrt[ 3 ]{ 9 }+\sqrt[ 3 ]{ 3 }+5}$を有利化せよ

出典:2023年京都大学
投稿日:2024.06.15

<関連動画>

埼玉大(経済)典型的な連立漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n$の一般項
$a_1=b_1=1$
$a_{n+1}=a_n+4b_n$
$b_{n+1}=a_n+b_n$を求めよ.

埼玉大過去問
この動画を見る 

福田の数学〜慶應義塾大学2024年看護医療学部第1問(1)〜さいころの目の積が4の倍数になる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)4個のさいころを同時に投げるとき、出た目の積が偶数になる確率は$\boxed{\ \ ア\ \ }$であり、出た目の積が4の倍数になる確率は$\boxed{\ \ イ\ \ }$である。
この動画を見る 

大学入試問題#838「基本問題」 #岩手大学(2023) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^2}{\sqrt{ x-1 }} dx$

出典:2023年岩手大学 入試問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題088〜一橋大学2018年度文系第4問〜四面体の体積の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ p,qを正の実数とする。原点をOとする座標空間内の3点P(p,0,0), Q(0,q,0), R(0,0,1)は$\angle$PRQ=$\frac{\pi}{6}$を満たす。四面体OPQRの体積の最大値を求めよ。

2018一橋大学文系過去問
この動画を見る 

徳島大(医)放物線の法線

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#徳島大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$C:y=x^2$上の$P(t,t^2)(t\gt 0)$における法線と$C$との交点を$Q(\neq P)$とする.
$PQ$の最小値を求めよ.

2020徳島大(医)過去問
この動画を見る 
PAGE TOP