「整数の性質」がスラスラわかる頭の使い方教えます【共通テスト数学IA】 - 質問解決D.B.(データベース)

「整数の性質」がスラスラわかる頭の使い方教えます【共通テスト数学IA】

問題文全文(内容文):
【共通テスト数学IA】整数の性質の解説動画です

天秤ばかりの皿$A$に物体$X$をのせ、皿$B$に3gの分銅3個を乗せたところ、天秤ばかりは$B$の側に傾いた。
さらに、皿$A$に8gの分銅1個をのせたところ、天秤ばかりは$A$の側に傾き、皿$B$に3gの分銅2個をのせると天秤ばかりは釣り合った。
このとき、皿$A,B$にのせているものの質量を比較すると
$M+8 \times $[ア]$= 3 \times$[イ] が成り立ち、$M=$[ウ]である。上の式は
$3 \times $[イ]$+8(-$[ア]$)=M$ と変形することができ、$x=$[イ]$, y=-$[ア]は、方程式$3x+8y=M$の整数解の一つである。
単元: #数A#整数の性質#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト数学IA】整数の性質の解説動画です

天秤ばかりの皿$A$に物体$X$をのせ、皿$B$に3gの分銅3個を乗せたところ、天秤ばかりは$B$の側に傾いた。
さらに、皿$A$に8gの分銅1個をのせたところ、天秤ばかりは$A$の側に傾き、皿$B$に3gの分銅2個をのせると天秤ばかりは釣り合った。
このとき、皿$A,B$にのせているものの質量を比較すると
$M+8 \times $[ア]$= 3 \times$[イ] が成り立ち、$M=$[ウ]である。上の式は
$3 \times $[イ]$+8(-$[ア]$)=M$ と変形することができ、$x=$[イ]$, y=-$[ア]は、方程式$3x+8y=M$の整数解の一つである。
投稿日:2023.12.28

<関連動画>

福田のおもしろ数学015〜ジュニア数学オリンピック本戦問題〜2つの式を満たす4つの自然数を求める

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#数学オリンピック
指導講師: 福田次郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a+b=cd \\
c+d=ab
\end{array}
\right.
\end{eqnarray}$
を満たす正の整数 $a,b,c,d$は?

ジュニア数学オリンピック過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第2問(3)〜平方数を3で割った余りに関する論証

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#推理と論証#推理と論証#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}$(3)次の2つの命題を証明せよ。
$(\textrm{i})$整数nが3の倍数でないならば、$n^2$を3で割った時の余りは1である。
$(\textrm{ii})$3つの整数$x,y,z$が等式$x^2+y^2=z^2$を満たすならば、
xとyの少なくとも一方は3の倍数である。

2022慶應義塾大学看護医療学科過去問
この動画を見る 

【数A】【整数の性質】進数応用 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3桁の自然数Nを7進法で表すと3桁の数a0b(7)となり,5進法で表すと逆の並びの3桁の数b0a(5)となるという。a,bを求めよ。また,Nを10進法で表せ。

自然数Nを5進法と7進法で表すと,それぞれ3桁の数abc(5),cab(7)になるという。a,b,cを求めよ。また,Nを10進法で表せ。

5種類の数字0,1,2,3,4を用いて表される自然数を,次のように小さい方から順に並べる。
1,2,3,4,10,11,12,13,14,20,21,22,……
(1) 2020番目の数をいえ。
(2) 2020は何番目の数か。
この動画を見る 

慶應義塾大(薬)n進法の基本

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\overbrace{210210210・・・・・・210_{(3)} }^{3n桁}$
$3$進法で表記された$210$を繰り返す$3n$桁の数を$十$進法にして$n$の式で表せ.

2021慶應(薬)過去問
この動画を見る 

2022年2月9日 早稲田本庄 2022 入試問題解説37問目

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a=?
b=?
(a>0,b>0)
*図は動画内参照

2022早稲田大学本庄高等学院
この動画を見る 
PAGE TOP