【高校数学】 数Ⅱ-161 関数の最大値・最小値⑥ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-161 関数の最大値・最小値⑥

問題文全文(内容文):
①関数$f(x)=x^3-3x^2+2(0 \leqq x \leqq a)$の最大値と最小値、およびそのときのxの値を求めよう。
ただし、$a \gt 0$とする。
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①関数$f(x)=x^3-3x^2+2(0 \leqq x \leqq a)$の最大値と最小値、およびそのときのxの値を求めよう。
ただし、$a \gt 0$とする。
投稿日:2015.10.20

<関連動画>

円周率の証明問題【2010年大分大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
円周率$\pi$に関して次の不等式が成立することを証明せよ。
ただし、数値$\pi=3.141592・・・$を使用して直接比較する解答は0点とする。

$3\sqrt6-3\sqrt2<\pi<24-12\sqrt3$

2010大分大過去問
この動画を見る 

福田の数学〜京都大学2023年理系第2問〜空間の位置ベクトルと直線のベクトル方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#空間ベクトル#剰余の定理・因数定理・組み立て除法と高次方程式#空間ベクトル#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 空間内の4点O,A,B,Cは同一平面上にないとする。点D,P,Qを次のように定める。点Dは$\overrightarrow{OD}$=$\overrightarrow{OA}$+$2\overrightarrow{OB}$+$3\overrightarrow{OC}$を満たし、点Pは線分OAを1:2に内分し、点Qは線分OBの中点である。さらに、直線OD上の点Rを、直線QRと直線PCが交点を持つように定める。このとき、線分ORの長さと線分RDの長さの比OR:RDを求めよ。

2023京都大学理系過去問
この動画を見る 

2021 神戸大(文)複素数の累乗

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$(3+i)^n$
$n=2,3,4,5$の値と虚部の整数を$10$で割った余りを求めよ.
②$(3+i)^n$は虚数であることを示せ.($n$は自然数)

2021神戸大(文)
この動画を見る 

福田の数学〜明治大学2024全学部統一IⅡAB第2問〜高次方程式の解と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$x$についての関数$f(x), g(x), h(x)$を$f(x) = 4x^4, g(x) = 12x + 8, h(x) = 4x^2+1$により定める。座標平面上で曲線 $y = f(x)$と直線$y=g(x)$は、異なる2点で交わる。それら交点の$x$座標を$a, b$ ($a \lt b$)とする。
(1) $f(x)+h(x) = (\fbox{ ア }x^2+\fbox{ イ })^2, g(x)+h(x) = (\fbox{ ウ }x+\fbox{ エ })^2$である。
(2) $a+b=\fbox{ オ }, b-a=\sqrt{ \fbox{ カ } }$である。
この動画を見る 

大学入試問題#103 東海大学医学部(2017) 二項定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
次の和を求めよ。
(1)
${}_{ n }C_0+{}_{ n }C_1+・・・+{}_{ n }C_n$

(2)
$\displaystyle \frac{1}{1!(2n)!}+\displaystyle \frac{1}{2(2n-1)!}+・・・+\displaystyle \frac{1}{n!(n+1)!}$

出典:2017年東海大学医学部 入試問題
この動画を見る 
PAGE TOP