【数Ⅲ】極限:極限の定形不定形をマスターしよう! - 質問解決D.B.(データベース)

【数Ⅲ】極限:極限の定形不定形をマスターしよう!

問題文全文(内容文):
極限の考え方の基本です。変形が必要な場合と必要でない場合の違いをチェックしましょう!
チャプター:

0:00 OP
0:30 極限の定形、不定形とは
5:05 実践
8:10 ED

単元: #関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
極限の考え方の基本です。変形が必要な場合と必要でない場合の違いをチェックしましょう!
投稿日:2021.12.09

<関連動画>

福田の数学・入試問題解説〜東北大学2022年理系第5問〜空間内の直線上の点列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ 座標空間内において、ベクトル\\
\overrightarrow{ a }=(1,2,1), \overrightarrow{ b }=(1,1,-1), \overrightarrow{ c }=(0,0,1)\\
が定める直線\\
l:s\overrightarrow{ a }, l':t\overrightarrow{ b }+\overrightarrow{ c }\\
を考える。点A_1を原点(0,0,0)とし、点A_1から直線l'に下ろした垂線A_1B_1と\\
おく。次に、点B_1(t_1\overrightarrow{ b }+\overrightarrow{ c })から直線lに下ろした垂線をB_1A_2とおく。\\
同様に、点A_k(s_k\overrightarrow{ a })から直線l'に下ろした垂線をA_kB_k、点B_k(t_k\overrightarrow{ b }+\overrightarrow{ c })から直線l\\
に下ろした垂線をB_kA_{k+1}とする手順を繰り返して、点A_n(s_n\overrightarrow{ a }),B_n(t_n\overrightarrow{ b }+\overrightarrow{ c })\\
(nは正の整数)を定める。\\
(1)s_nを用いてs_{n+1}を表せ。\\
(2)極限値S=\lim_{n \to \infty}s_n, T=\lim_{n \to \infty}t_nを求めよ。\\
(3)(2)で求めたS,Tに対して、点A,BをそれぞれA(S\overrightarrow{ a }),B(T\overrightarrow{ b }+\overrightarrow{ c })とおくと、\\
直線ABは2直線l,l'の両方と直交することを示せ。
\end{eqnarray}

2022東北大学理系過去問
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試理系第1問(2)〜定積分と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(2)$\log$を自然対数とするとき、次の等式が成り立つ。
$\lim_{h \to 0}\int_{\frac{\pi}{3}}^{\frac{\pi}{3}+h}\log(|\sin t|^{\frac{1}{h}})dt=$
$\frac{1}{\boxed{ウ}}\log\frac{\boxed{エ}}{\boxed{オ}}$

2022明治大学全統理系過去問
この動画を見る 

【ゼロで割っているのか?】x → a の場合②:中学からの極限~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \displaystyle \lim_{x \to 1}\dfrac{x^2+2x-3}{x^2+x-2}$を求めよ.
この動画を見る 

中学からの極限(発展編)~全国入試問題解法 #shorts #数学 #極限 #頭の体操

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \displaystyle \lim_{x \to 1}\dfrac{ax-1}{x-a}$を求めよ.
この動画を見る 

What is e?? The essence of e. Why (e^x)’=e^x

アイキャッチ画像
単元: #関数と極限#微分とその応用#数列の極限#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$\displaystyle \lim_{ n \to \infty }(1+\displaystyle \frac{1}{n})^n$
$\displaystyle \lim_{ h \to \infty }(1+h)^{\displaystyle \frac{1}{h}}$

(2)
$y=e^x$

(3)
動画内の図を見て求めよ

(4)
$y=log_{e}x$
$y^1=\displaystyle \frac{1}{x}$
この動画を見る 
PAGE TOP