福田の数学〜北海道大学2023年理系第4問〜絶対値の和の最小となる確率 - 質問解決D.B.(データベース)

福田の数学〜北海道大学2023年理系第4問〜絶対値の和の最小となる確率

問題文全文(内容文):
$\Large\boxed{4}$ nを2以上の自然数とする。1個のさいころをn回投げて出た目の数を順に$a_1$, $a_2$, ... ,$a_n$とし、
$K_n$=|1-$a_1$|+|$a_1$-$a_2$|+...+|$a_{n-1}$-$a_n$|+|$a_n$-6|
とおく。また$K_n$のとりうる値の最小値を$q_n$とする。
(1)$K_3$=5となる確率を求めよ。
(2)$q_n$を求めよ。また、$K_n$=$q_n$となるための$a_1$, $a_2$,...,$a_n$に関する必要十分条件を求めよ。
(3)nを4以上の自然数とする。$L_n$=$K_n$+|$a_4$-4|とおき、$L_n$のとりうる値の最小値を$r_n$とする。$L_n$=$r_n$となる確率$p_n$を求めよ。

2023北海道大学理系過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ nを2以上の自然数とする。1個のさいころをn回投げて出た目の数を順に$a_1$, $a_2$, ... ,$a_n$とし、
$K_n$=|1-$a_1$|+|$a_1$-$a_2$|+...+|$a_{n-1}$-$a_n$|+|$a_n$-6|
とおく。また$K_n$のとりうる値の最小値を$q_n$とする。
(1)$K_3$=5となる確率を求めよ。
(2)$q_n$を求めよ。また、$K_n$=$q_n$となるための$a_1$, $a_2$,...,$a_n$に関する必要十分条件を求めよ。
(3)nを4以上の自然数とする。$L_n$=$K_n$+|$a_4$-4|とおき、$L_n$のとりうる値の最小値を$r_n$とする。$L_n$=$r_n$となる確率$p_n$を求めよ。

2023北海道大学理系過去問
投稿日:2023.04.08

<関連動画>

福田のわかった数学〜高校1年生065〜場合の数(4)0を含む順列

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(4) 0を含む順列
$0,1,2,3,4,5,6$から異なる4個を選んで
4桁の整数を作るとき、次の個数を求めよ。
(1)全部で  (2)偶数  (3)奇数  (4)9の倍数  (5)4の倍数
この動画を見る 

一橋大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを$n$回ふって
(1)$n$回目にはじめて積が$12$になる確率を求めよ.
(2)積が$12$になる確率を求めよ.

1996一橋大過去問
この動画を見る 

【高校数学】重複を許して取る組合せの例題~必死に解くで~ 1-12.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
袋の中に赤玉,青玉,白玉,黒玉がたくさん入ってる。
この袋から7個の玉を取り出すとき、玉の取り出し方は何通りあるか。

2⃣
1個のさいころを3回投げ、出た目を順に$a,b,c$とする。
次の場合は何通りあるか。
(i) $a \lt b \lt c$
(ii) $a \leqq b \leqq c$

3⃣
次の場合を満たす$x,y,z$は何通りか
(i) $x + y + z = 9, x,y,z$は負でない整数
(ii) $x + y + z = 15, x,y,z$は正の整数
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第3問〜最後の目が得点になる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#確率分布と統計的な推測#確率分布#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
各頂点に1から4までの数が1つずつ書いてあり、振るとそれらの1つが等し
い確率で得られる正四面体の形のさいころTがある。これを用いて、2人のプレイ
ヤA, B が以下のようなゲームをする。それぞれの枠内に記したルールに従い、各
プレイヤがTを1回以上振って、最後に出た数をそのプレイヤの得点とし、得点の
多い方を勝ちとする。ここで、同点のときには常にBの勝ちとする。また、振り直
すかどうかは、各プレイヤーとも自分が勝つ確率を最大にするように選択するとす
る。このとき、Aが勝つ確率pについて答えよ。ただし、以下のそれぞれの場合に
ついて、pは0以上の整数k, nを用いて$p =\frac{2k+1}{2^n}$と表せるので、このk, nを
答えよ。
(1)$A, B$がそれぞれ1回ずつTを振る
このときpを表すk, nは、$k=\boxed{ケ} ,\ n=\boxed{コ}$である。

(2)先にAが一回振る。次にBが2回まで振ってよい(Aの得点を知っている状
況で、1回振り直してよい)
このときpを表すk,nは、$k=\boxed{サ} ,\ n=\boxed{シ}$である。

(3)先にAが2回まで振ってよい(Bの得点がまだわからない状況で、1回振り直
してよい)。次にBが1回振る。
このときpを表すk,nは、$k=\boxed{ス} ,\ n=\boxed{セ }$である。

(4)先にAが2回まで振ってよい(Bの得点がまだわからない状況で、1回振り直
してよい)。次にBが2回まで振ってよい(Aの得点を知っている状況で、1回
振り直してよい)
このときpを表すk,nは、$k=\boxed{ソ} ,\ n=\boxed{タ}$である。

(5)先にAが3回まで振ってよい(Bの得点がまだわからない状況で、2回まで振
り直してよい)。次にBが2回まで振ってよい(Aの得点を知っている状況で、
1回振り直してよい)
このときpを表すk,nは、$k=\boxed{チ} ,\ n=\boxed{ツ}$である。

2022上智大学理系過去問
この動画を見る 

明治大 多項定理 場合の数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#式と証明#場合の数#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
明治大学過去問題
同類項は何種類か
$(x+y+z)^{88}$
この動画を見る 
PAGE TOP