山形大 漸化式 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

山形大 漸化式 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
山形大学過去問題
$a_1 = -1$ $\quad$ $n=1,2,3\cdots$
$2\displaystyle \sum_{k=1}^{n}a_k=3a_{n+1}-2a_n-1$
一般項$a_n$を求めよ。
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
山形大学過去問題
$a_1 = -1$ $\quad$ $n=1,2,3\cdots$
$2\displaystyle \sum_{k=1}^{n}a_k=3a_{n+1}-2a_n-1$
一般項$a_n$を求めよ。
投稿日:2018.05.03

<関連動画>

確率、等比数列 巴戦は平等な優勝決定法か?(類)東大、神戸大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
確率、等比数列 巴戦は平等な優勝決定法か?

(類)東大、神戸大
この動画を見る 

【数B】【数列】その他の数列1 ※問題文は概要欄

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列 $\{a_{n}\}$ が
$a_{1}+2a_{2}+3a_{3}+\cdots +na_{n}=n(n+1)$
を満たすとき、和 $a_{1}+a_{2}+\cdots a_{n}$ を求めよ。
この動画を見る 

福田の数学〜京都大学2022年理系第6問〜漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
数列$\left\{x_n\right\}, \left\{y_n\right\}$を次の式
$x_1=0, x_{n+1}=x_n+n+2\cos\frac{2\pi x_n}{3}  (n=1,2,3,\ldots)$
$y_{3m+1}=3m, y_{3m+2}=3m+2, y_{3m+3}=3m+4  (m=0,1,2,3,\ldots)$
により定める。このとき、数列$\left\{x_n-y_n\right\}$の一般項を求めよ。

2022京都大学理系過去問
この動画を見る 

数学「大学入試良問集」【13−7 数学的帰納法(13の倍数の証明)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$を自然数とするとき、$4^{2n-1}+3^{n+1}$は$13$の倍数であることを示せ。
この動画を見る 

2022都立入試 整数問題証明(11の倍数)

アイキャッチ画像
単元: #数学(中学生)#数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022都立入試 整数問題証明に関して解説していきます.
この動画を見る 
PAGE TOP