問題文全文(内容文):
図1のように,関数$y = ax^2$のグラフ上に2点$A,B$があり,
$A$の座標は$(-4,-8)$である.
線分$AB$は$x$軸に平行で,この線分と$y$軸との交点を$C$とする.
また,点$P$は線分$OC$上の点である.次の各問いに答えなさい.
①$a$の値を求めなさい.
②$\angle APB = 60°$であるとき,線分$BP$の長さを求めなさい.
③$P$の$y$座標が-4のとき,直線$AP$と$x$軸との交点を$Q$とする.
このとき,$Q$を通り,$△ABQ$の面積を2等分する直線の式を求めなさい.
④図2のように,$P$の座標が-6のとき,
$x$軸上に,点$R(6,0)$をとり, $△BRP$をつくる.
$B$から辺$PR$に垂線をひき、辺$PR$との交点を$H$とするとき,
線分$BH$の長さを求めなさい.
図は動画内参照
図1のように,関数$y = ax^2$のグラフ上に2点$A,B$があり,
$A$の座標は$(-4,-8)$である.
線分$AB$は$x$軸に平行で,この線分と$y$軸との交点を$C$とする.
また,点$P$は線分$OC$上の点である.次の各問いに答えなさい.
①$a$の値を求めなさい.
②$\angle APB = 60°$であるとき,線分$BP$の長さを求めなさい.
③$P$の$y$座標が-4のとき,直線$AP$と$x$軸との交点を$Q$とする.
このとき,$Q$を通り,$△ABQ$の面積を2等分する直線の式を求めなさい.
④図2のように,$P$の座標が-6のとき,
$x$軸上に,点$R(6,0)$をとり, $△BRP$をつくる.
$B$から辺$PR$に垂線をひき、辺$PR$との交点を$H$とするとき,
線分$BH$の長さを求めなさい.
図は動画内参照
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
図1のように,関数$y = ax^2$のグラフ上に2点$A,B$があり,
$A$の座標は$(-4,-8)$である.
線分$AB$は$x$軸に平行で,この線分と$y$軸との交点を$C$とする.
また,点$P$は線分$OC$上の点である.次の各問いに答えなさい.
①$a$の値を求めなさい.
②$\angle APB = 60°$であるとき,線分$BP$の長さを求めなさい.
③$P$の$y$座標が-4のとき,直線$AP$と$x$軸との交点を$Q$とする.
このとき,$Q$を通り,$△ABQ$の面積を2等分する直線の式を求めなさい.
④図2のように,$P$の座標が-6のとき,
$x$軸上に,点$R(6,0)$をとり, $△BRP$をつくる.
$B$から辺$PR$に垂線をひき、辺$PR$との交点を$H$とするとき,
線分$BH$の長さを求めなさい.
図は動画内参照
図1のように,関数$y = ax^2$のグラフ上に2点$A,B$があり,
$A$の座標は$(-4,-8)$である.
線分$AB$は$x$軸に平行で,この線分と$y$軸との交点を$C$とする.
また,点$P$は線分$OC$上の点である.次の各問いに答えなさい.
①$a$の値を求めなさい.
②$\angle APB = 60°$であるとき,線分$BP$の長さを求めなさい.
③$P$の$y$座標が-4のとき,直線$AP$と$x$軸との交点を$Q$とする.
このとき,$Q$を通り,$△ABQ$の面積を2等分する直線の式を求めなさい.
④図2のように,$P$の座標が-6のとき,
$x$軸上に,点$R(6,0)$をとり, $△BRP$をつくる.
$B$から辺$PR$に垂線をひき、辺$PR$との交点を$H$とするとき,
線分$BH$の長さを求めなさい.
図は動画内参照
投稿日:2017.02.23





