高専数学 微積II #4 4次近似式 - 質問解決D.B.(データベース)

高専数学 微積II #4 4次近似式

問題文全文(内容文):
$e^x$の$x=0$における4次近似式を用いて
$\sqrt{e}$
の近似値を小数第4位まで求めよ.
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$e^x$の$x=0$における4次近似式を用いて
$\sqrt{e}$
の近似値を小数第4位まで求めよ.
投稿日:2021.07.12

<関連動画>

対数の近似値の求め方

アイキャッチ画像
単元: #微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^{246}$と$3^{144}$どちらが大きいか求めよ
この動画を見る 

高専数学 微積II n次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)$の$x=a$における$n$次近似式の等式は
$f(x)=\dfrac{f(a)}{O!}+\dfrac{f'(a)}{1!}(x-a)+・・・・・・$
$+\dfrac{f^{(n)}(a)}{n!} (x-a)^n+\xi_n (x)$
つまり
$f(x)=\displaystyle \sum_{k=0}^{n}\dfrac{f^{(k)}(a)}{k!} (x-a)^k+\xi (x)$
ただし
$\displaystyle \lim_{x\to a} \dfrac{\xi_n(x)}{(x-a)^n}=0$

これを解け.
この動画を見る 

高専数学 微積II #5 4次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\dfrac{1}{\sqrt{1-x}}$の$x=0$における
4次近似式の等式を求めよ.
この動画を見る 

高専数学 微積II #2(1)(2) 2次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x=0$における2次近似式を求め等式で表せ.

(1)$e^{3x}$
(2)$x\sqrt{1+x}$
この動画を見る 

【数学III】関数の近似式を10分でマスターする

アイキャッチ画像
単元: #微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学III】関数の近似式の解説動画です
この動画を見る 
PAGE TOP