微分方程式⑧-4【非同次2階微分方程式】(高専数学、数検1級) - 質問解決D.B.(データベース)

微分方程式⑧-4【非同次2階微分方程式】(高専数学、数検1級)

問題文全文(内容文):
非同次2階微分方程式を解説していきます.
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
非同次2階微分方程式を解説していきます.
投稿日:2020.12.26

<関連動画>

練習問題41 微分方程式(数研1級1次 高専数学 教員採用試験)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学検定#数学検定1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$(1-x)y+(1+y)x\dfrac{dy}{dx}=0$の
一般解を求めよ.
この動画を見る 

微分方程式⑦-4【2階微分方程式の一般解を求める】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\dfrac{d^2x}{dt^2}-5\dfrac{dx}{dt}+6x=\sin t$の一般解を求めよ.
(2)$\dfrac{d^2x}{dt^2}+9x=\cos 3t$の一般解を求めよ.
この動画を見る 

#28 数検1級1次 過去問 Arctanの加法定理

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#三角関数とグラフ#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$\tan^{-1}1+\tan^{-1}2+\tan^{-1}3$の値を求めよ。
この動画を見る 

#1微分方程式練習問題 (高専数学 数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$ x\dfrac{dy}{dx}=y(\log y-\log x+1)$
の一般解を求めよ.
この動画を見る 

#67数学検定1級1次「こんな問題で時間使いたくない」 #因数分解

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$xy(x^2-y^2)+yz(y^2-z^2)+zx(z^2-x^2)$を因数分解せよ

出典:数検1級1次
この動画を見る 
PAGE TOP