数学「大学入試良問集」【2−6 相反方程式】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【2−6 相反方程式】を宇宙一わかりやすく

問題文全文(内容文):
次の問いに答えよ。
(1)
実数$x \neq 0$に対して$|x+\displaystyle \frac{1}{x}|$のとり得る値の範囲を求めよ。

(2)
$a,b$を実数の定数とする。
方程式$x^4+ax^3+bx^2+ax+1=0$が実数解をもたないとき、点$(a,b)$の存在範囲を図示せよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
実数$x \neq 0$に対して$|x+\displaystyle \frac{1}{x}|$のとり得る値の範囲を求めよ。

(2)
$a,b$を実数の定数とする。
方程式$x^4+ax^3+bx^2+ax+1=0$が実数解をもたないとき、点$(a,b)$の存在範囲を図示せよ。
投稿日:2021.03.20

<関連動画>

信州大 二項展開 数学的帰納法 合同式 良問再投稿

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#信州大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4^{2n-1}+3^{n+1}$
13の倍数であることを示せ
3通りの解法

出典:信州大学 過去問
この動画を見る 

東工大 整数問題

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は3以上の奇数
$a_n=\displaystyle \frac{1}{6}\displaystyle \sum_{k=1}^{n-1}(k-1)k(k+1)$

$b_n=\displaystyle \frac{n^2-1}{8}$

(1)
$a_n,b_n$は整数

(2)
$a_n-b_n$は4の倍数

出典:2014年東京工業大学 過去問
この動画を見る 

大学入試問題#375「定跡どおり」 広島市立大学2015 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}e^{-\sqrt{ 1-x }}dx$

出典:2015年広島市立大学 入試問題
この動画を見る 

数学「大学入試良問集」【7−2 二次関数と不等式】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a$を実数の定義とする。
区間$1 \leqq x \leqq 4$を定義域とする2つの関数$f(x)=ax,g(x)=x^2-4x+9$を考える。
以下の条件を満たすような$a$の範囲をそれぞれ求めよ。
(1)定義域に属するすべての$x$に対して、$f(x) \geqq g(x)$が成り立つ。
(2)定義域に属する$x$で、$f(x) \geqq g(x)$を満たすものがある。
(3)定義域に属するすべての$x_1$と$x_2$に対して、$f(x_1) \geqq g(x_2)$が成り立つ
(4)定義域に属する$x_1$と$x_2$で、$f(x_1) \geqq g(x_2)$を満たすものがある。
この動画を見る 

福田の数学〜京都大学2023年理系第2問〜空間の位置ベクトルと直線のベクトル方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#空間ベクトル#剰余の定理・因数定理・組み立て除法と高次方程式#空間ベクトル#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 空間内の4点O,A,B,Cは同一平面上にないとする。点D,P,Qを次のように定める。点Dは$\overrightarrow{OD}$=$\overrightarrow{OA}$+$2\overrightarrow{OB}$+$3\overrightarrow{OC}$を満たし、点Pは線分OAを1:2に内分し、点Qは線分OBの中点である。さらに、直線OD上の点Rを、直線QRと直線PCが交点を持つように定める。このとき、線分ORの長さと線分RDの長さの比OR:RDを求めよ。

2023京都大学理系過去問
この動画を見る 
PAGE TOP