【理数個別の過去問解説】2021年度東京大学 数学 理科第1問(2)/文科第3問(2)解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2021年度東京大学 数学 理科第1問(2)/文科第3問(2)解説

問題文全文(内容文):
東京大学2021年度理科大問1(文科大問3)(2)
a,bを実数とする。座標平面上の放物線
$C:y=x^2+ax+b$
は放物線$y=-x^2$と2つの共有点を持ち、一方の共有点のx座標は$-1<x<0$を満たし、他方の共有点のx座標は$0<x<1$を満たす。
(1)点(a,b)のとりうる範囲を座標平面上に図示せよ。
(2)放物線Cの通りうる範囲を座標平面上に図示せよ。
チャプター:

0:00 オープニング
0:05 導入
0:37 注目する文字を変える
2:58 グラフから条件を考える
6:49 条件から領域を図示

単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東京大学2021年度理科大問1(文科大問3)(2)
a,bを実数とする。座標平面上の放物線
$C:y=x^2+ax+b$
は放物線$y=-x^2$と2つの共有点を持ち、一方の共有点のx座標は$-1<x<0$を満たし、他方の共有点のx座標は$0<x<1$を満たす。
(1)点(a,b)のとりうる範囲を座標平面上に図示せよ。
(2)放物線Cの通りうる範囲を座標平面上に図示せよ。
投稿日:2021.04.06

<関連動画>

愚直にやるかすっきりやるか・整式の剰余

アイキャッチ画像
単元: #剰余の定理・因数定理・組み立て除法と高次方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
&&x^{2022}を(x^2+x+1)^2で割った余り

\end{eqnarray}
$
この動画を見る 

三次関数の最大値 微分の基礎 大阪教育大

アイキャッチ画像
単元: #数Ⅱ#三角関数#微分法と積分法#三角関数とグラフ#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=-x^3-3x^2+3kx+3k+2$の$-1\leqq x\leqq 1$における最大値を求めよ.

2008大阪教育大過去問
この動画を見る 

福田のわかった数学〜高校2年生022〜円の外部から引いた接線の求め方

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円の方程式
円$C:x^2+y^2=4$ の接線で$(2,3)$を通るものと
そのときの接点を次の3通りの方法で求めよ。
(1)接線の公式$x_1x+y_1=r^2$ を利用
(2)点と直線の距離の公式を利用
(3)判別式を利用
この動画を見る 

【数学II】加法定理の証明の仕方を理解して覚える動画!

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学II】加法定理の証明についての説明動画です
この動画を見る 

福田のおもしろ数学115〜円外の点から引いた2本の接線の接点を結んでできる直線の方程式

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
円$x^2$+$y^2$=$r^2$ 上に円外の点($a$,$b$)から2本の接線を引く。このとき2接点P,Qを結ぶ直線の方程式は$ax$+$by$=$r^2$ であることを証明せよ。
この動画を見る 
PAGE TOP