空間上の3本の直線 - 質問解決D.B.(データベース)

空間上の3本の直線

問題文全文(内容文):
空間内の3本の直線l,m,nに対して、l⊥m、かつl⊥nならば、
常にm$/\!/$n
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
空間内の3本の直線l,m,nに対して、l⊥m、かつl⊥nならば、
常にm$/\!/$n
投稿日:2021.11.12

<関連動画>

嵐の方程式 5-1=0 をオイラーの公式を使って よさまつが証明するよ

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#式と証明#恒等式・等式・不等式の証明#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
オイラーの公式 説明動画です
この動画を見る 

六角形バリアは不可能じゃね?

アイキャッチ画像
単元: #図形の性質#空間における垂直と平行と多面体(オイラーの法則)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
葬送のフリーレンのバリアなどで六角形で球を作っている件に関して解説していきます。
この動画を見る 

平行線と角の和 芝浦工大附属 2022年入試問題解説46問目

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x+ \angle y$=?
*図は動画内参照

2022芝浦工業大学附属高等学校
この動画を見る 

福田の数学〜早稲田大学2022年理工学部第4問〜正八面体の内部に配置した6個の球の和集合の体積と共通部分の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ 一辺の長さが\sqrt3+1である正八面体の頂点を右図(※動画参照)\\
のようにP_1,P_2,P_3,P_4,P_5,P_6とする。i=1,2,\ldots,6に対して\\
P_i以外の5点を頂点とする四角錐のすべての面に\\
内接する球(内部含む)をB_iとする。B_1の体積をXとし、B_1と\\
B_2の共通部分の体積をYとし、B_1,B_2,B_3の共通部分の体積をZ\\
とする。さらにB_1,B_2,\ldots,B_nを合わせて得られる立体の体積を\\
V_n\ \ (n=2,3,\ldots,6)とする。以下の問いに答えよ。\\
(1)V_n=aX+bY+cZとなる整数a,b,cをn=2,3,6の場合\\
について求めよ。\\
(2)Xの値を求めよ。\\
(3)V_2の値を求めよ。\\
\end{eqnarray}

2022早稲田大学理工学部過去問
この動画を見る 

もっちゃんとオイラーの公式を学ぶ 数学の魔術師も出演

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
オイラーの公式に関して解説していきます.
$e^{i \pi}=-1$
この動画を見る 
PAGE TOP