高専数学 微積I #259(2) 広義積分 - 質問解決D.B.(データベース)

高専数学 微積I #259(2) 広義積分

問題文全文(内容文):
$\displaystyle \int_{e}^{\infty}\dfrac{1}{r(\log r)^2} dr$
を計算せよ.
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{e}^{\infty}\dfrac{1}{r(\log r)^2} dr$
を計算せよ.
投稿日:2021.07.03

<関連動画>

福田の数学〜東京工業大学2022年理系第3問〜直角三角形の頂点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\alphaは0 \lt \alpha \lt \frac{\pi}{2}$を満たす実数とする。
$\angle A=\alpha$および$\angle P=\frac{\pi}{2}$を満たす直角三角形APB
が、次の2つの条件$(\textrm{a}),(\textrm{b})$を満たしながら、時刻t=0から時刻$t=\frac{\pi}{2}$まで
xy平面上を動くとする。
$(\textrm{a})$時刻tでの点A,Bの座標は、それぞれ$A(\sin t,0),B(0, \cos t)$である。
$(\textrm{b})$点Pは第一象限内にある。
このとき、次の問いに答えよ。
(1)点Pはある直線上を動くことを示し、その直線の方程式を$\alpha$を用いて表せ。
(2)時刻$t=0$から時刻$t=\frac{\pi}{2}$までの間に点Pが動く道のりを$\alpha$を用いて表せ。
(3)xy平面内において、連立不等式
$x^2-x+y^2 \lt 0, x^2+y^2-y \lt 0$
により定まる領域をDとする。このとき、点Pは領域Dには入らないことを示せ。

2022東京工業大学理系過去問
この動画を見る 

√の中に8がいっぱい!!

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{8\sqrt{8\sqrt{8}}} = 2^?$
この動画を見る 

【数Ⅱ】【指数関数と対数関数】対数計算1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を簡単にせよ。
(1) $(\log_{2} 9+\log_{8} 3)(\log_{3} 2+\log_{9} 4)$
(2) $\log_{4} 3・\log_{9} 25・\log_{5} 8)$
(3) $\log_{2} 10・\log_{5} 10-(\log_{2} 5+\log_{5} 2)$

$a=\log_{2} 3$,$b=\log_{2} 5$とするとき、次の式をa,bで表せ。
(1) $\log_{2} 15$
(2) $\log_{2} 75$
(3) $\log_{4} 45$

$p=\log_{a} x$,$q=\log_{a} y$,$r=\log_{a} z$であるとき、次の各式をp,q,rで表せ。
ただし、a,x,y,zは正の数とし、a≠1とする。
(1) $\log_{a} x²y³z⁴$
(2) $\log_{a} \frac{x}{(yz)^2}$
(3) $\log_{a} \frac{x\sqrt{y}}{\sqrt[3]{z}}$

$a=\log_{15} 3$, $b=\log_{3} 2$とするとき、次の式をa,bで表せ。
(1) $\log_{15} 2$
(2) $\log_{15} 5$
この動画を見る 

福田の数学〜東京理科大学2023年創域理工学部第3問〜対数関数と直線で囲まれた図形の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 座標平面上で、曲線$y$=$\sqrt 5\log x$ ($x$>0)を$C$とし、$C$上の点A($a$, $\sqrt 5\log a$) ($a$>0)をとる。ただし、$\log$は自然対数とする。点Aにおける$C$の接線を$l$とし、$l$と$y$軸の交点をQ(0,$q$)とする。また、点Aにおける$C$の法線を$m$とし、$m$と$y$軸の交点をR(0,$r$)とする。
(1)$q$を、$a$を用いて表せ。
(2)$r$を、$a$を用いて表せ。
(3)線分QRの長さが$3\sqrt 5$となるような$a$の値を求めよ。
(4)$\angle$ARQ=$\frac{\pi}{6}$となるような$a$の値を求めよ。
(5)$a$=$e^2$とする。このとき、$x$軸、曲線$C$および直線$l$で囲まれた部分の面積を求めよ。ただし、$e$は自然対数の底である。
この動画を見る 

【数Ⅱ】微分法と積分法:f(x)の式の中に積分が入る関数を求めます!

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式を満たす$f(x)$を求めよ。 
$f(x)=x+\displaystyle \int_{0}^{3}f(t)dt$
この動画を見る 
PAGE TOP