【小学校の学習範囲から始まって】整数:市川高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【小学校の学習範囲から始まって】整数:市川高等学校~全国入試問題解法

問題文全文(内容文):
$A-2B-2G+L=2021$のとき,自然数の組$(A,B)$をすべて求めよ.
※$G$は1でない自然数とする.

市川高校過去問
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$A-2B-2G+L=2021$のとき,自然数の組$(A,B)$をすべて求めよ.
※$G$は1でない自然数とする.

市川高校過去問
投稿日:2022.06.22

<関連動画>

合同式2021

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2021^{2021^{2021}}$を$42$で割った余りを求めよ.
この動画を見る 

東京都立大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東京都立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z^4-2(\cos\displaystyle \frac{3}{7}\pi)z^3+2z^2-2(\cos\displaystyle \frac{3}{7}\pi)z+1=0$

(1)
$z+\displaystyle \frac{1}{z}$の値を求めよ

(2)
$z^n+\displaystyle \frac{1}{z^n}$の実部の最大値とそれを与える自然数$n$を求めよ

出典:東京都立大学 過去問
この動画を見る 

名古屋大 分野不明

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt{n}$は整数でなく,小数第一位が$0$で$2$倍は$0$でない.
$\sqrt{n}=\boxed{A}.0\boxed{b}・・・$

(1)最小の$n$を求めよ.
(2)小さい順で$10$番目の$n$を求めよ.

2019名古屋大過去問
この動画を見る 

2020問題 整数 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2020^{2n-1}+6・2^{4n-1}$は11の倍数であることを示せ
この動画を見る 

8進数の7の倍数・3の倍数判定法

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$8$進法で表記された
$\boxed{a}\boxed{b}\boxed{c}\boxed{d}\boxed{e}\boxed{f}$
が①$7$で割り切れる必要十分条件を求めよ.
②$3$で割り切れる必要十分条件を求めよ.
この動画を見る 
PAGE TOP