横浜市立(医)漸化式 - 質問解決D.B.(データベース)

横浜市立(医)漸化式

問題文全文(内容文):
$a_1=a_2=1$,$a_{n+2}-5a_{n+1}+6a_n-6n=0$である.
一般項を求めよ.

横浜市立(医)過去問
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=a_2=1$,$a_{n+2}-5a_{n+1}+6a_n-6n=0$である.
一般項を求めよ.

横浜市立(医)過去問
投稿日:2020.04.02

<関連動画>

漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=3$
$a_{n+1}=3a_{n}+6n^2-12n+2$
一般項を求めよ

出典:大阪工業大学 過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第2問〜二項定理と数列の部分和

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
数列$\left\{a_n\right\}$の初項から第n項までの和$S_n$、数列$\left\{b_n\right\}$の初項から第n項までの和$T_n$
はそれぞれ
$S_n=\sum_{k=1}^n {}_n \mathrm{ C }_k, T_n=\sum_{k=1}^n k・{}_n \mathrm{ C }_k$
で表される。
(1)$x \gt y \geqq 1$を満たす自然数x,yについて、
${}_x \mathrm{ C }_y={}_{x-1} \mathrm{ C }_y+{}_i \mathrm{ C }_j, y・{}_x \mathrm{ C }_y=x・{}_p \mathrm{ C }_q,$
が成り立つ。i,j,p,qをそれぞれx,yを用いて表すと、$i=\boxed{\ \ ス\ \ },j=\boxed{\ \ セ\ \ },$
$p=\boxed{\ \ ソ\ \ },q=\boxed{\ \ タ\ \ }$である。
(2)$a_2,b_4$の値をそれぞれ求めると$a_2=\boxed{\ \ チ\ \ },b_4=\boxed{\ \ ツ\ \ }$である。
(3)$S_n,a_n$をそれぞれnの式で表すと、$S_n=\boxed{\ \ テ\ \ },a_n=\boxed{\ \ ト\ \ }$である。
(4)$b_n$をnの式で表すと、$b_n=\boxed{\ \ ナ\ \ }$である。

2022慶應義塾大学薬学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第2問(2)〜漸化式と和に関する不等式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}$(2)$a_1=4,\ \ \ 4a_{n+1}=2a_n+3(n=1,2,3,\ldots)$で与えられる
数列$\left\{a_n\right\}$の一般項は$a_n=\boxed{\ \ ア\ \ }$である。
また$\sum_{n=1}^la_n \geqq 20$
を満たす最小の自然数lは$\boxed{\ \ イ\ \ }$である。

2022慶應義塾大学看護医療学科過去問
この動画を見る 

福田のおもしろ数学570〜無理式のシグマ計算

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\displaystyle \sum_{n=1}^{49} \dfrac{1}{\sqrt{n+\sqrt{n^2-1}}}$を求めて下さい。
  
この動画を見る 

数学「大学入試良問集」【13−8 数学的帰納法(不等式の証明)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$が自然数のとき、次の各問いに答えよ。
(1)不等式$n! \geqq 2^{n-1}$が成り立つことを証明せよ。
(2)不等式$1+\displaystyle \frac{1}{1!}+\displaystyle \frac{1}{2!}+・・・+\displaystyle \frac{1}{n!} \lt 3$が成り立つことを証明せよ。
この動画を見る 
PAGE TOP