福田のおもしろ数学431〜sin^318°+sin^218°の値を求める - 質問解決D.B.(データベース)

福田のおもしろ数学431〜sin^318°+sin^218°の値を求める

問題文全文(内容文):

$\sin^3 18°+\sin^2 18°$の値を求めよ。
   
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\sin^3 18°+\sin^2 18°$の値を求めよ。
   
投稿日:2025.03.08

<関連動画>

福田の数学〜明治大学2024全学部統一IⅡAB第2問〜高次方程式の解と面積

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$
\fcolorbox{#000}{ #fff }{2}
$

$
xについての関数f(x), g(x), h(x)を
$

$
f(x) = 4x ^ 4 , \quad g(x) = 12x + 8 h(x) = 4x ^ 2 + 1
$

$
により定める。座標平面上で曲線 y = f (x)と直線 y = g(x)は、異なる2点で交わる。それら交点の座標をそれぞれa, b(ただしa < b)とする。
$

$
(1) f(x)+h(x) = (
\fcolorbox{#000}{ #fff }{$ア \ \ $}
x² +
\fcolorbox{#000}{ #fff }{$イ \ \ $}
)², g(x)+h(x) = (
\fcolorbox{#000}{ #fff }{$ウ \ \ $}
x+
\fcolorbox{#000}{ #fff }{$エ \ \ $}
)^2 である。
$

$
(2) a + b =
\fcolorbox{#000}{ #fff }{$オ \ \ $}
b - a = \sqrt{
\fcolorbox{#000}{ #fff }{$カ \ \ $}}
である。
$

$
(3) x = a, \ x = bはx^5 =
\fcolorbox{#000}{ #fff }{$カ \ \ $}
x +
\fcolorbox{#000}{ #fff }{$ク \ \ $}
を満たすので、 b ^ 5 - a ^ 5 =
\fcolorbox{#000}{ #fff }{$ケ \ \ $}
\sqrt{
\fcolorbox{#000}{ #fff }{$コ \ \ $}}
である。
$

$
(4) 座標平面上で曲線y = f(x) と直線y = g(x) で囲まれる図形の面積は
\fcolorbox{#000}{ #fff }{$サシ \ \ \ \ \ $}
\sqrt{\fcolorbox{#000}{ #fff }{$ス \ \ $}}
である。
$
この動画を見る 

福田のおもしろ数学301〜4次方程式の解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$x ^ 4 - 18x ^ 3 + k x ^ 2 + 200x - 1984 = 0 $の2つの解の積が$-32$のとき、実数$k$の値は?
この動画を見る 

数学「大学入試良問集」【10−6 領域図式と最大値】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#関西大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
座標平面上で不等式
$2(log_3\ x-1) \leqq log_3\ y-1 \leqq log_3\left[ \dfrac{ x }{ 3 } \right]+log_3(2-x)$
を満たす点$x(x,y)$全体をつくる領域を$D$とする。
(1)$D$を座標平面上に図示せよ。
(2)$a \lt 2$の範囲にある定数$a$に対し、$y-ax$の$D$上での最大値$M(a)$を求めよ。
この動画を見る 

山梨大 複素数の4乗根

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z$複素数
$z^4=-8-8\sqrt{ 3 }i$

出典:山梨大学 過去問
この動画を見る 

これ知ってた?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
指数タワーに関して解説していきます.
この動画を見る 
PAGE TOP