見掛け倒しの方程式 - 質問解決D.B.(データベース)

見掛け倒しの方程式

問題文全文(内容文):
これを解け.

$16^{\cos^2 x}+16^{\sin^2 x}=10$
単元: #図形と方程式#円と方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$16^{\cos^2 x}+16^{\sin^2 x}=10$
投稿日:2021.04.26

<関連動画>

信州大(医)多項式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数$x,y$が
$2^4-2x^3y-3x^3+3x^2y-xy+y^2+x-y=0$を満たすとき、$x^2+y^2-4y+4$の最小値は?

出典:信州大学医学部 過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第1問〜2つの円に同時に外接する円の条件

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 座標平面上の原点を中心とする半径2の円をC_1、中心の座標が(7,0)、半径3\\
の円をC_2とする。さらにrを正の実数とするとき、C_1とC_2に同時に外接する円で、\\
その中心の座標が(a,b)、半径がrであるものをC_3とする。ただし、2つの円が\\
外接するとは、それらが1点を共有し、中心が互いの外部にあるときをいう。\\
\\
(1)rの最小値は\boxed{\ \ ア\ \ }であり、aの最大値は\boxed{\ \ イ\ \ }となる。\\
\\
(2)aとbは関係式b^2=\boxed{\ \ ウエ\ \ }(a+\boxed{\ \ オカ\ \ })(a-4)を満たす。\\
\\
(3)C_3が直線x=-3に接するとき、a=\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケ\ \ }}, |b|=\frac{\sqrt{\boxed{\ \ コサシ\ \ }}}{\boxed{\ \ ス\ \ }}である。\\
\\
(4)点(a,b)と原点を通る直線と、点(a,b)と点(7,0)を通る直線が直交するとき、\\
|b|=\frac{\boxed{\ \ セソ\ \ }}{\boxed{\ \ タ\ \ }}となる。
\end{eqnarray}

2021慶應義塾大学経済学部過去問
この動画を見る 

【数Ⅱ】図形と方程式:x²+y²+4x-6y+13=0はどのような図形を表しているでしょう?

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
教材: #高校ゼミスタンダード#高校ゼミスタンダード数Ⅱ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x^2+y^2+4x-6y+13=0$はどのような図形を表しているか?
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第7問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#円と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{7}}\ i$を虚数単位とする。$\alpha=-1+i$とし、zは次の条件をともに満たす複素数とする。
条件1.$\frac{z-\alpha}{z-\bar{\alpha}}$の実部は0である。
条件2.zの虚部は0以上である。
このとき、複素数平面上でzがとりうる値全体の集合を表す図形Cと、実軸で
囲まれる部分の面積は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\pi$である。
また、$w=\frac{iz}{z+1}$で表される点wがとりうる値全体の集合を表す図形と、
図形Cで囲まれる部分の面積は$\frac{\boxed{\ \ ウ\ \ }\ \pi+\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}$である。

2022早稲田大学人間科学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第3問〜円と円の位置関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$
図のように(※動画参照)円Aの中に、5つの円Bと4つの円Cが含まれている。
中心の円Bは他の4つの円Bに接し、他の4つの円Bのそれぞれは中心の円Bと円A
と2つの円Cに接している。4つの円Cのそれぞれは円Aと2つの円Bに接している。
いま、円Bの半径を1とすると、円Cの半径は
$\frac{\boxed{\ \ アイ\ \ }+\boxed{\ \ ウエ\ \ }\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キク\ \ }}$
である。

2021慶應義塾大学総合政策学部過去問
この動画を見る 
PAGE TOP