福田の1.5倍速演習〜合格する重要問題073〜東京理科大学2019年度理工学部第3問〜定積分と不等式そして極限 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題073〜東京理科大学2019年度理工学部第3問〜定積分と不等式そして極限

問題文全文(内容文):
$\Large\boxed{3}$ 関数f(x)を$f(x)=\displaystyle\int_0^x\frac{dt}{1+t^2}$と定める。
(1)t=$\tan\theta$とおく置換積分により$f(1)=\displaystyle\int_0^1\frac{dt}{1+t^2}$の値を求めよ。
(2)0 $\lt$ $\alpha$ $\lt$ 1とし、mを自然数とするとき、以下の不等式が成り立つことを示せ。
$f(a)\displaystyle\int_a^1x^mdx$ $\lt$ $\displaystyle\int_a^1f(x)x^mdx$ $\lt$ $\displaystyle\int_0^1f(x)x^mdx$ $\lt$ $f(1)\displaystyle\int_0^1x^mdx$
(3)$\displaystyle\lim_{m \to \infty}\left(1-\frac{1}{\sqrt m}\right)^m$を求めよ。必要ならばs >1のとき$\displaystyle\left(1-\frac{1}{s}\right)^s \lt \frac{1}{2}$となることを用いてよい。
(4)$\displaystyle\lim_{m \to \infty}m\int_{1-\frac{1}{\sqrt m}}^1f(x)x^mdx$を求めよ。

2019東京理科大学理工学部過去問
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 関数f(x)を$f(x)=\displaystyle\int_0^x\frac{dt}{1+t^2}$と定める。
(1)t=$\tan\theta$とおく置換積分により$f(1)=\displaystyle\int_0^1\frac{dt}{1+t^2}$の値を求めよ。
(2)0 $\lt$ $\alpha$ $\lt$ 1とし、mを自然数とするとき、以下の不等式が成り立つことを示せ。
$f(a)\displaystyle\int_a^1x^mdx$ $\lt$ $\displaystyle\int_a^1f(x)x^mdx$ $\lt$ $\displaystyle\int_0^1f(x)x^mdx$ $\lt$ $f(1)\displaystyle\int_0^1x^mdx$
(3)$\displaystyle\lim_{m \to \infty}\left(1-\frac{1}{\sqrt m}\right)^m$を求めよ。必要ならばs >1のとき$\displaystyle\left(1-\frac{1}{s}\right)^s \lt \frac{1}{2}$となることを用いてよい。
(4)$\displaystyle\lim_{m \to \infty}m\int_{1-\frac{1}{\sqrt m}}^1f(x)x^mdx$を求めよ。

2019東京理科大学理工学部過去問
投稿日:2023.01.27

<関連動画>

目で見てわかる収束の値

アイキャッチ画像
単元: #関数と極限#数列の極限#関数の極限#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+\dfrac{1}{4^4}+・・・・・・+\dfrac{1}{4^n}$
これは収束する値か?

この動画を見る 

福田のおもしろ数学319〜桁数と極限

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
自然数 $n$ に対して $3^n$ の桁数を $k_n$ とするとき、$\displaystyle \lim_{n \to \infty} \frac{k_n}{n}$ を求めよ。
この動画を見る 

福田の数学〜大阪大学2023年理系第1問〜不等式の証明と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#関数と極限#微分とその応用#数列の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ nを2以上の自然数とする。
(1)0≦x≦1のとき、次の不等式が成り立つことを示せ。
$\frac{1}{2}x^2$≦$\displaystyle(-1)^n\left\{\frac{1}{x+1}-1-\sum\_{k=2}^n(-x)^{k-1}\right\}$≦$x^n-\frac{1}{2}x^{n+1}$
(2)$a_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$ とするとき、次の極限値を求めよ。
$\displaystyle\lim_{n \to \infty}(-1)^nn(a_n-\log 2)$

2023大阪大学理系過去問
この動画を見る 

【数Ⅲ】極限:次の無限級数の和を求めよう。Σ[n=1~∞](-1/3)^n sin(nπ/2)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の無限級数の和を求めよう。
$\displaystyle \sum_{n=1}^{\infty}\left(-\dfrac{1}{3}\right)^n \sin\dfrac{n\pi}{2}$
この動画を見る 

【数Ⅲ】【関数と極限】グラフをかき、その連続性について調べよ。(1) y=lim 1+x/1+xΛ2n(2) y=lim x-1/1+|x|Λn(3) y=lim nsin2x+1/ncos²x+1

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかき、その連続性について調べよ。

(1) $y=\displaystyle \lim_{n\to\infty}\frac{1+x}{1+x^{2n}}$

(2) $y=\displaystyle \lim_{n\to\infty}\frac{x-1}{1+|x|^{n}}$

(3) $y=\displaystyle \lim_{n\to\infty}\frac{n\sin 2x+1}{n\cos^2 x+1}$
この動画を見る 
PAGE TOP