高専数学 微積II #50(3)(4) 曲面の接平面の方程式 - 質問解決D.B.(データベース)

高専数学 微積II #50(3)(4) 曲面の接平面の方程式

問題文全文(内容文):
次の曲面上の点における接平面の方程式を求めよ.

(3)$z=\sin(x^-2-y^2)$
$x=1,y=1$
(4)$z=\log(x^2+y^2)$
$x=1,y=0$
単元: #数Ⅱ#平面上のベクトル#微分法と積分法#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
次の曲面上の点における接平面の方程式を求めよ.

(3)$z=\sin(x^-2-y^2)$
$x=1,y=1$
(4)$z=\log(x^2+y^2)$
$x=1,y=0$
投稿日:2021.07.31

<関連動画>

【数C】平面ベクトル:高2K塾共通テスト模試(ベクトル)を解説してみた!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#全統模試(河合塾)#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
高2全統共通テスト模試のベクトルの解説です。
この動画を見る 

【理数個別の過去問解説】2016年度東北大学 数学 文系第1問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面上で原点Oと3点A(3,1)B(1,2)C(-1,1)を考える。実数s,tに対し、点PをOP=sOA+tOBにより定める。
(1)s,tが条件$-1≦s≦1,-1≦t≦1,-1≦s+t≦1$を満たすとき点P(x,y)の存在する範囲Dを図示しよう。
(2)点Pが(1)で求めた範囲Dを動くとき、内積OP・OCの最大値を求め、そのときのPの座標を求めよう。
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第1問(1)〜空間のベクトル方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)$\overrightarrow{ a }=(\sqrt3,0,1)$とする。
空間ベクトル$\overrightarrow{ b }, \overrightarrow{ c }$はともに大きさが1であり、
$\overrightarrow{ a }∟\overrightarrow{ b }, \overrightarrow{ b }∟\overrightarrow{ c }, \overrightarrow{ c }∟\overrightarrow{ a }$とする。
$(\textrm{i})p,q,r$を実数とし、$\overrightarrow{ x }=p\overrightarrow{ a }+q\overrightarrow{ b }+r\overrightarrow{ c }$とするとき、
内積$\overrightarrow{ x }・\overrightarrow{ a }$と$\overrightarrow{ x }$の大きさ$|\overrightarrow{ x }|$をp,q,rを用いて表すと、
$\overrightarrow{ x }・\overrightarrow{ a }=\boxed{\ \ ア\ \ },|\ \overrightarrow{ x } \ |=\boxed{\ \ イ\ \ }$である。
$(\textrm{ii})(5,0,z)=s\overrightarrow{ a }+(\cos\theta)\overrightarrow{ b }+(\sin\theta)\overrightarrow{ c }$を満たす実数$s,\theta$が存在するような
実数zは2個あるが、それらを全て求めると$z=\boxed{\ \ ウ\ \ }$である。

2022慶應義塾大学理工学部過去問
この動画を見る 

【高校数学】数Ⅲ-46 極座標と極方程式③

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$O$を極とする極座標において、
2点$A\left(2,\dfrac{\pi}{6}\right),B\left(4,\dfrac{5}{6}\pi\right)$がある。

①線分$AB$の長さを求めよ。

②$\triangle OAB$の面積を求めよ。
この動画を見る 

福田の数学〜一橋大学2025文系第4問〜ベクトル方程式と領域と角を2等分するベクトル

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

原点を$O$とする座標空間内の

$2$点$A(0,3,-5),B(5,-2,10)$に対して

$\overrightarrow{OP}=s\left \{ (1-t)\overrightarrow{OA}+t\overrightarrow{OB} \right \},x\geqq 0,\dfrac{1}{5} \leqq t \leqq \dfrac{3}{5}$

で定まる点$P$が存在する範囲を$D$とする。

$D$に含まれる半径$10\sqrt2$の円のうち、

その中心と原点との距離が最小となるものを

$C$とする。

円$C$の中心の座標を求めよ。

$2025$年一橋大学文系過去問題
この動画を見る 
PAGE TOP