米国選抜数学試験 - 質問解決D.B.(データベース)

米国選抜数学試験

問題文全文(内容文):
1990米国選抜数学試験
a,b,x,yは実数
$ax+by=3$
$ax^2+by^2=7$
$ax^3+by^3=16$
$ax^4+by^4=42$
$ax^5+by^5=?$
単元: #数学検定・数学甲子園・数学オリンピック等#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1990米国選抜数学試験
a,b,x,yは実数
$ax+by=3$
$ax^2+by^2=7$
$ax^3+by^3=16$
$ax^4+by^4=42$
$ax^5+by^5=?$
投稿日:2023.07.25

<関連動画>

【4分でマスター!!】単項式の乗法(指数の法則)を解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
単項式の乗法(指数の法則)について解説します。
①$3a×(a^2)^3$
②$2a^2b×(-5ab^2)$
③$(-3x^2y)^2×(-2x^3y^2)^3$
この動画を見る 

【数I】中高一貫校問題集3(数式・関数編)47:数と式:因数分解:次の式を因数分解せよ。(x+1)(x+2)(x+3)(x+4)-24

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材: #TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を因数分解せよ。(x+1)(x+2)(x+3)(x+4)-24
この動画を見る 

大阪教育大 整式の剰余 複素数 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#複素数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$\omega$を方程式$x^2+x+1-0$の解を1つとする.
$(\omega+1)^{12}$の値を求めよ.
(2)$(x+1)^{12}$を$x^3-1$で割った余りを求めよ.

大阪教育大過去問
この動画を見る 

連立2元9次方程式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#2次関数#複素数と方程式#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x^4y^5+x^5y^4=810 \\
x^3y^6+x^6y^3=945
\end{array}
\right.
\end{eqnarray}$
実数解を求めよ.
この動画を見る 

いきなり代入しませんよね?【数学 入試問題】【前橋国際大学】

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x=\dfrac{-1+\sqrt5}{2}$のとき、$x^3+x^2+x+1$の値を求めよ。

前橋国際大過去問
この動画を見る 
PAGE TOP