2021東京女子医大 対数 - 質問解決D.B.(データベース)

2021東京女子医大 対数

問題文全文(内容文):
$x,y$は実数であり,$x\gt 0,y\gt 0$である.
$xy^{1+\log_2 x^2}=1$を満たすとき,$xy$のとりうる値の範囲を求めよ.

2021東京女子医大過去問
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y$は実数であり,$x\gt 0,y\gt 0$である.
$xy^{1+\log_2 x^2}=1$を満たすとき,$xy$のとりうる値の範囲を求めよ.

2021東京女子医大過去問
投稿日:2021.01.31

<関連動画>

対数の近似値

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\log_{10}2\lt 0.308$を示せ.
この動画を見る 

福田のおもしろ数学136〜巨大な数の大小関係

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$2023^{2024}$と$2024^{2023}$の大小を比較してください。
この動画を見る 

福田の数学〜上智大学2023年理工学部第3問〜対数関数の積分と数学的帰納法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $e$を自然定数の底とする。自然数$n$に対して、
$S_n$=$\displaystyle\int_1^e(\log x)^n dx$
とする。
(1)$S_1$の値を求めよ。
(2)すべての自然数$n$に対して、
$S_n$=$a_n e$+$b_n$, ただし$a_n$, $b_n$はいずれも整数
と表されることを証明せよ。
この動画を見る 

見掛け倒しの対数方程式

アイキャッチ画像
単元: #対数関数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\log_{4}x)^{\log_{2}x}$=X
xが1より大きいことを解け

東北学院大過去問
この動画を見る 

これから数Ⅲを学ぶ人に贈る「ネイピア数eってなんだよ?」

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):

$e=\displaystyle \lim_{ x \to \infty }(1+\displaystyle \frac{1}{n})^n$

$=\displaystyle \lim_{ h \to \infty }(1+h)^{\displaystyle \frac{1}{h}}$



$y=e^x$ $y^1=e^x$



動画内の図をみて求めよ



$y=log_{e}x$
$y^1=\displaystyle \frac{1}{x}$
この動画を見る 
PAGE TOP