【数A】【整数の性質】進数応用 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数A】【整数の性質】進数応用 ※問題文は概要欄

問題文全文(内容文):
3桁の自然数Nを7進法で表すと3桁の数a0b(7)となり,5進法で表すと逆の並びの3桁の数b0a(5)となるという。a,bを求めよ。また,Nを10進法で表せ。

自然数Nを5進法と7進法で表すと,それぞれ3桁の数abc(5),cab(7)になるという。a,b,cを求めよ。また,Nを10進法で表せ。

5種類の数字0,1,2,3,4を用いて表される自然数を,次のように小さい方から順に並べる。
1,2,3,4,10,11,12,13,14,20,21,22,……
(1) 2020番目の数をいえ。
(2) 2020は何番目の数か。
チャプター:

0:00 一問目解説
3:39 二問目解説
7:36 三問目解説
9:53 エンディング

単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3桁の自然数Nを7進法で表すと3桁の数a0b(7)となり,5進法で表すと逆の並びの3桁の数b0a(5)となるという。a,bを求めよ。また,Nを10進法で表せ。

自然数Nを5進法と7進法で表すと,それぞれ3桁の数abc(5),cab(7)になるという。a,b,cを求めよ。また,Nを10進法で表せ。

5種類の数字0,1,2,3,4を用いて表される自然数を,次のように小さい方から順に並べる。
1,2,3,4,10,11,12,13,14,20,21,22,……
(1) 2020番目の数をいえ。
(2) 2020は何番目の数か。
投稿日:2025.01.25

<関連動画>

東海大 約数の総和 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'08東海大学過去問題
mの約数の総和をS(m)
例 S(4)=1+2+4=7
(1)P素数 n自然数 $S(P^n)$
(2)$2^{n+1}-1$が素数、$m=2^n(2^{n+1}-1)$
S(m)をmで表せ
(3)$m=2^s3^t・5,S(m)=3m$
mを求めよ。
この動画を見る 

数学「大学入試良問集」【3−1 整数 不定方程式】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$p,q,r$は不等式$p \leqq q \leqq r$を満たす正の整数とする。
このとき、次の各問いに答えよ。
(1)
$\displaystyle \frac{1}{p}+\displaystyle \frac{1}{q}=1$を満たす$p,q$をすべて求めよ。

(2)
$\displaystyle \frac{1}{p}+\displaystyle \frac{1}{q}+\displaystyle \frac{1}{r}=1$を満たす$p,q,r$をすべて求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年商学部第2問〜確率の計算

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$
$a,k,n$は正の整数で、$a \lt k$とする。袋の中にk個の玉が入っている。そのうち
a個は赤玉で、残りの$k-a$個は青玉である。
「袋から1個の玉を取り出し、色を調べてから袋に戻すとともに、その玉と同色
の玉をn個袋に追加する」という操作を繰り返す。
$(\textrm{i})$1回目に赤玉が出たとき、2回目に赤玉が出る確率は$\boxed{\ \ ア\ \ }$である。
$(\textrm{ii})$2回目に赤玉が出る確率は$\boxed{\ \ イ\ \ }$である。
$(\textrm{iii})$2回目に青玉が出たとき、1回目に赤玉が出ていた確率は$\boxed{\ \ ウ\ \ }$である。
$(\textrm{iv})$この操作を3回繰り返す。1回ごとに赤玉が出たら1点、青玉が出たら2点
を得るとき、得点の合計が4点となる確率は$\boxed{\ \ エ\ \ }$である。

2021慶應義塾大学総合政策学部過去問
この動画を見る 

誰もがハマる!? 方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$x+\frac{x}{x}+\frac{x}{x+\frac{x}{x}}=1$
この動画を見る 

大学入試問題#236 富山県立大学(2012) #背理法

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#富山県立大学
指導講師: ますただ
問題文全文(内容文):
$x^3-x^2+2x-1=0$の実数解は無理数であることを背理法を用いて示せ

出典:2012年富山県立大学 入試問題
この動画を見る 
PAGE TOP