【数Ⅲ-172】積分と体積③(放物線と直線編) - 質問解決D.B.(データベース)

【数Ⅲ-172】積分と体積③(放物線と直線編)

問題文全文(内容文):
数Ⅲ(積分と体積③・放物線と直線編)

Q
次の放物線と直線とで囲まれた図形を、$x$軸のまわりに回転させてできる立体の体積を求めよ。
①放物線$y=-x^2+3x$、直線$y=x$
②放物線$y=x^2-2x$、直線$y=-x+2$

単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分と体積③・放物線と直線編)

Q
次の放物線と直線とで囲まれた図形を、$x$軸のまわりに回転させてできる立体の体積を求めよ。
①放物線$y=-x^2+3x$、直線$y=x$
②放物線$y=x^2-2x$、直線$y=-x+2$

投稿日:2020.10.20

<関連動画>

#電気通信大学2015#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^2(1-x)^9 dx$

出典:2015年電気通信大学
この動画を見る 

大学入試問題#536「計算力大事」 福島県立医科大学(2021) #微積の応用

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#福島県立医科大学
指導講師: ますただ
問題文全文(内容文):
すべての実数$x$に対して$f(x)=x+\displaystyle \int_{0}^{1} 2^{2t+x}f(t)\ dt$を満たすとき$f(0)$を求めよ

出典:2021年福島県立医科大学 入試問題
この動画を見る 

大学入試問題#252 茨城大学(2012) #定積分

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#対数関数#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{log2}e^{|x|}e^xdx$を計算せよ。

出典:2012年茨城大学 入試問題
この動画を見る 

大学入試問題#592「カップラーメンができる前には解きたい」 北海学園大学(2019) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \tan^3x\ dx$

出典:2019年北海学園大学 入試問題
この動画を見る 

13愛知県教員採用試験(数学:5番 微積)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
5⃣ $F(x)=\int_{\pi - x}^{\pi + x} t sint dt$
$(0 \leqq x \leqq 2\pi)$
F(x)の最小値を求めよ。
この動画を見る 
PAGE TOP