高知大 筑波大 指数方程式 漸化式 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

高知大 筑波大 指数方程式 漸化式 Mathematics Japanese university entrance exam

問題文全文(内容文):
高知大学過去問題
$f(x)=x^4+4^{-x}-2^{2+x}-2^{2-x}+2$
①f(x)の最小値とそのときのxの値
②f(x)=0を解け

筑波大学過去問題
$(5+\sqrt2)^n=a_n+b_n\sqrt2 \quad (n自然数)$
$a_n$,$b_n$をnを用いて表せ。
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#筑波大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
高知大学過去問題
$f(x)=x^4+4^{-x}-2^{2+x}-2^{2-x}+2$
①f(x)の最小値とそのときのxの値
②f(x)=0を解け

筑波大学過去問題
$(5+\sqrt2)^n=a_n+b_n\sqrt2 \quad (n自然数)$
$a_n$,$b_n$をnを用いて表せ。
投稿日:2018.08.20

<関連動画>

福田のわかった数学〜高校2年生089〜指数対数(2)指数法則を使う計算(2)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 指数対数(2) 指数法則(2)
(1)$\sqrt[3]{54}×\sqrt7×\sqrt[4]{14}×\frac{1}{\sqrt[4]{490}}×\sqrt[4]{10}×\frac{1}{\sqrt[4]7}×\frac{1}{\sqrt[12]2}$
(2)$\sqrt[3]{54}+\frac{3}{2}\sqrt[6]4+\sqrt[3]{-\frac{1}{4}}$

$\frac{1}{\sqrt[3]2+1}$の分母を有理化せよ。
この動画を見る 

【高校数学】高校数学 指数の基本計算の考え方【数学のコツ】

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
指数の基本計算の考え方を解説していきます.
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2(2)。3次関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(2)座標平面上で、次の3つの3次関数のグラフについて考える。$y=4x^3+2x^2+3x+5 \ldots④ y=-2x^3+7x^2+3x+5 \ldots⑤$
$y=5x^3-x^2+3x+5 \ldots⑥$
④,⑤,⑥の3次関数のグラフには次の共通点がある。
共通点:・y軸との交点のy座標は$\boxed{ソ}$である。
・y軸との交点における接線の方程式は $y=\boxed{タ}\ x+\boxed{チ}$ である。

$a,b,c,d$を0でない実数とする。
曲線$y=ax^3+bx^2+cx+d$上の点$(0, \boxed{ツ})$における接線の方程式は
$y=\boxed{テ}\ x+\boxed{ト}$ である。
次に$f(x)=ax^3+bx^2+cx+d, g(x)=\boxed{テ}\ x+\boxed{ト}$とし、
$f(x)-g(x)$について考える。
$h(x)=f(x)-g(x)$とおく。a,b,c,dが正の実数であるとき、$y=h(x)$のグラフ
の概形は$\boxed{ナ}$である。

(※$\boxed{ナ}$の解答群は動画参照)
$y=f(x)$のグラフと$y=g(x)$のグラフの共有点のx座標は$\frac{\boxed{ニヌ}}{\boxed{ネ}}$と$\boxed{ノ}$である。
また、xが$\frac{\boxed{ニヌ}}{\boxed{ネ}}$と$\boxed{ノ}$の間を動くとき、
$|f(x)-g(x)|$の値が最大となるのは、$x=\frac{\boxed{ハヒフ}}{\boxed{ヘホ}}$のときである。

2021共通テスト数学過去問
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第1問〜三角関数、指数関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#センター試験・共通テスト関連#共通テスト#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第1問}$
[1](1)次の問題$A$について考えよう。
$\boxed{\boxed{問題A} 関数y=\sin\theta+\sqrt3\cos\theta\left(0 \leqq \theta \leqq \displaystyle \frac{\pi}{2}\right)$の最大値を求めよ。}$

$\sin\displaystyle \frac{\pi}{\boxed{\ \ ア\ \ }}=\displaystyle \frac{\sqrt3}{2},$ $\cos\displaystyle \frac{\pi}{\boxed{\ \ ア\ \ }}=\displaystyle \frac{1}{2}$
であるから、三角関数の合成により

$y=\boxed{\ \ イ\ \ }\sin\left(\theta+\displaystyle \frac{\pi}{\boxed{\ \ ア\ \ }}\right)$

と変形できる。よって、$y$は$\theta=\displaystyle \frac{\pi}{\boxed{\ \ ウ\ \ }}$で最大値$\ \boxed{\ \ エ\ \ }\ $をとる。

(2)$p$を定数とし、次の問題$B$について考えよう。
$\boxed{\boxed{問題B} 関数y=\sin\theta+p\cos\theta\left(0 \leqq \theta \leqq \frac{\pi}{2}\right)の最大値を求めよ。}$

$(\textrm{i})$ $p=0$のとき、$y$は$\theta=\displaystyle \frac{\pi}{\boxed{\ \ オ\ \ }}$で最大値$\ \boxed{\ \ カ\ \ }\ $をとる。
$(\textrm{ii})$ $p \gt 0$のときは、加法定理
$\cos(\theta-\alpha)=\cos\theta\cos\alpha+\sin\theta\sin\alpha$
を用いると
$y=\sin\theta+p\cos\theta=\sqrt{\boxed{\boxed{\ \ キ\ \ }}}\cos(\theta-\alpha)$
と表すことができる。ただし、$\alpha$は
$\sin\alpha=\displaystyle \frac{\boxed{\boxed{\ \ ク\ \ }}}{\sqrt{\boxed{\boxed{\ \ キ\ \ }}}}$、$\cos\alpha=\frac{\boxed{\boxed{\ \ ケ\ \ }}}{\sqrt{\boxed{\boxed{\ \ キ\ \ }}}}$、$0 \lt \alpha \lt \displaystyle \frac{\pi}{2}$
を満たすものとする。このとき、$y$は$\theta=\boxed{\boxed{\ \ コ\ \ }}$で最大値
$\sqrt{\boxed{\boxed{\ \ サ\ \ }}}$をとる。

$(\textrm{iii})$ $p \lt 0$のとき、$y$は$\theta=\boxed{\boxed{\ \ シ\ \ }}$で最大値$\boxed{\boxed{\ \ ス\ \ }}$をとる。

$\boxed{\boxed{\ \ キ\ \ }}~\boxed{\boxed{\ \ ケ\ \ }}、\boxed{\boxed{\ \ サ\ \ }}、\boxed{\boxed{\ \ ス\ \ }}$の解答群(同じものを繰り返
し選んでもよい。)
⓪$-1$
①$1$
②$-p$
③$p$
④$1-p$
⑤$1+p$
⑥$-p^2$
⑦$p^2$
⑧$1-p^2$
⑨$1+p^2$
ⓐ$(1-p)^2$
ⓑ$(1+p)^2$


$\boxed{\boxed{\ \ コ\ \ }}、\boxed{\boxed{\ \ シ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$0$
①$\alpha$
②$\displaystyle \frac{\pi}{2}$


[2]二つの関数$f(x)=\displaystyle \frac{2^x+2^{-x}}{2}$、$g(x)=\displaystyle \frac{2^x-2^{-x}}{2}$ について考える。

(1)$f(0)=\boxed{\ \ セ\ \ }、g(0)=\boxed{\ \ ソ\ \ }$である。また、$f(x)$は相加平均
と相乗平均の関係から、$x=\boxed{\ \ タ\ \ }$で最小値$\ \boxed{\ \ チ\ \ }\$ をとる。
$g(x)=-2\$ となる$x$の値は$\log_2\left(\sqrt{\boxed{\ \ ツ\ \ }}-\boxed{\ \ テ\ \ }\right)$である。

(3)次の①~④は、$x$にどのような値を代入しても常に成り立つ。
$f(-x)=\boxed{\boxed{\ \ ト\ \ }}$ $\cdots$①
$g(-x)=\boxed{\boxed{\ \ ナ\ \ }}$ $\cdots$②
$\left\{f(x)\right\}^2-\left\{g(x)\right\}^2=\boxed{\ \ ニ\ \ }$ $\cdots$③
$g(2x)=\boxed{\ \ ヌ\ \ }\ f(x)g(x)$ $\cdots$④

$\boxed{\boxed{\ \ ト\ \ }}、\boxed{\boxed{\ \ ナ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$f(x)$
①$-f(x)$
②$g(x)$
③$-g(x)$


(3)花子さんと太郎さんは、$f(x)$と$g(x)$の性質について話している。

花子:①~④は三角関数の性質に似ているね。
太郎:三角関数の加法定理に類似した式($\textrm{A}$)~($\textrm{D}$)を考えてみたけど、
常に成り立つ式はあるだろうか。
花子:成り立たない式を見つけるために、式($\textrm{A}$)~($\textrm{D}$)の$\beta$に何か具体
的な値を代入して調べてみたらどうかな。

太郎さんが考えた式
$f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta)$ $\cdots(\textrm{A})$
$f(\alpha+\beta)=f(\alpha)f(\beta)+g(\alpha)g(\beta)$ $\cdots(\textrm{B})$
$g(\alpha-\beta)=f(\alpha)f(\beta)+g(\alpha)g(\beta)$ $\cdots(\textrm{C})$
$g(\alpha+\beta)=f(\alpha)g(\beta)-g(\alpha)f(\beta)$ $\cdots(\textrm{D})$


(1),(2)で示されたことのいくつかを利用すると、式($\textrm{A}$)~($\textrm{D}$)のうち、
$\boxed{\boxed{\ \ ネ\ \ }}$以外の三つは成り立たないことが分かる。$\boxed{\boxed{\ \ ネ\ \ }}$は左辺と右辺
をそれぞれ計算することによって成り立つことが確かめられる。

$\boxed{\boxed{\ \ ネ\ \ }}$の解答群
⓪$(\textrm{A})$
①$(\textrm{B})$
②$(\textrm{C})$
③$(\textrm{D})$

2021共通テスト過去問
この動画を見る 

騙していません!

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$3^{4^{2^x}}=81^{2^6}$
この動画を見る 
PAGE TOP