大学入試問題#807「落ち着いて解く!」 #福島県立医科大学(2019) #積分方程式 - 質問解決D.B.(データベース)

大学入試問題#807「落ち着いて解く!」 #福島県立医科大学(2019) #積分方程式

問題文全文(内容文):
実数$x$についての関数の列$\{f_n(x\})$が
$f_n(x)=\displaystyle \sum_{k=1}^n \displaystyle \frac{x^k}{k}-2\displaystyle \int_{0}^{1} f_n(t)dt$を満たしている。
$\displaystyle \lim_{ n \to \infty } f_n(0)$を求めよ。

出典:2019年福島県立医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#福島県立医科大学
指導講師: ますただ
問題文全文(内容文):
実数$x$についての関数の列$\{f_n(x\})$が
$f_n(x)=\displaystyle \sum_{k=1}^n \displaystyle \frac{x^k}{k}-2\displaystyle \int_{0}^{1} f_n(t)dt$を満たしている。
$\displaystyle \lim_{ n \to \infty } f_n(0)$を求めよ。

出典:2019年福島県立医科大学 入試問題
投稿日:2024.05.02

<関連動画>

【数学】東大理科2022大問6ガチ解説!考え方から正解まで、思考プロセスをお見せします!

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東大理系数学2022大問6
Oを原点とする座標平面上で考える。0以上の整数kに対して、vec(v_k)を
$\vec{v_k}=\left(\cos \left(\dfrac{2k\pi}{3}\right),\sin\left(\dfrac{2k\pi}{3}\right)\right)$
と定める。投げたとき表と裏がどちらも1/2の確率で出るコインをN回投げて座標平面上に点$X_0,X_1,X_2,…,X_N$を以下の規則(i)(ii)に従って定める。
(i)X_0はOにある。
(ii)nを1以上N以下の整数とする。$X_{n_1}$が定まったとし、$X_n$を次のように定める。
・n回目のコイン投げで表が出た場合、
$\vec{OX_n}=\vec{OX_(n-1)}+\vec{v_k}$
により$X_n$を定める。ただし、kは1回目からn回目までのコイン投げで裏が出た回数とする。
・n回目のコイン投げで裏が出た場合、$X_n$を$X_{n-1}$と定める。
(1)$N=8$とする。$X_8$がOにある確率を求めよ。
(2)$N=200$とする。$X_{200}$がOにあり、かつ、合計200回のコイン投げで表がちょうどr回出る確率を$p_r$とおく。ただし$0\leqq r\leqq 200$とする。$p_r$を求めよ。また$p_r$が最大となるrの値を求めよ。
この動画を見る 

福田の数学〜神戸大学2024年理系第5問〜定積分で表された関数と不等式

アイキャッチ画像
単元: #積分とその応用#定積分#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 0以上の実数$x$に対して、
$f(x)$=$\displaystyle\frac{1}{2}\int_{-x}^x\frac{1}{1+u^2}du$
と定める。以下の問いに答えよ。
(1)0≦$\alpha$<$\displaystyle\frac{\pi}{2}$ を満たす実数$\alpha$に対して、$f(\tan\alpha)$を求めよ。
(2)$xy$平面上で、次の連立不等式の表す領域を図示せよ。
0≦$x$≦1, 0≦$y$≦1, $f(x)$+$f(y)$≦$f(1)$
またその領域の面積を求めよ。
この動画を見る 

対数の良問!何で2022を挟み込む?【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$5.4<\log_4 2022<5.5$であることを示せ。
ただし,$0.301<\log_{10} 2<0.3011$であることは用いてよい。

京都大過去問
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第1問(1)〜指数法則を使った計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(1)式$3(x+5)^{-\frac{5}{2}}$ の値は、$x$=$0$ のとき $\boxed{\ \ ア\ \ }$ であり、$x$=$4$ のとき $\boxed{\ \ イ\ \ }$ である。
この動画を見る 

名古屋市立 4次関数と接線

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4+2x^3-x^2$
点$A(a,f(a))$における接線と$f(x)$が$A$以外の2点$P,Q$で交わる

(1)
$a$の範囲を求めよ

(2)
点$A$が線分$PQ$上にあるような$a$の範囲を求めよ

出典:1995年名古屋市立大学 過去問
この動画を見る 
PAGE TOP