問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ x \gt 0を定義域とする関数f(x)が次の等式\\
f(x)=\int_1^e\log(xt) f(t)dt+x\\
を満たすとき、以下の問いに答えよ。\hspace{30pt}\\
(1)\int_1^e\log x dx\ を求めよ。\hspace{60pt}\\
(2)\int_1^e(\log x)^2 dx\ を求めよ。\hspace{50pt}\\
(3)\int_1^ex\log x dx\ を求めよ。\hspace{53pt}\\
\\
(4)f(x)を求めよ。\hspace{93pt}
\end{eqnarray}
2022青山学院大学理工学部過去問
\begin{eqnarray}
{\large\boxed{4}}\ x \gt 0を定義域とする関数f(x)が次の等式\\
f(x)=\int_1^e\log(xt) f(t)dt+x\\
を満たすとき、以下の問いに答えよ。\hspace{30pt}\\
(1)\int_1^e\log x dx\ を求めよ。\hspace{60pt}\\
(2)\int_1^e(\log x)^2 dx\ を求めよ。\hspace{50pt}\\
(3)\int_1^ex\log x dx\ を求めよ。\hspace{53pt}\\
\\
(4)f(x)を求めよ。\hspace{93pt}
\end{eqnarray}
2022青山学院大学理工学部過去問
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ x \gt 0を定義域とする関数f(x)が次の等式\\
f(x)=\int_1^e\log(xt) f(t)dt+x\\
を満たすとき、以下の問いに答えよ。\hspace{30pt}\\
(1)\int_1^e\log x dx\ を求めよ。\hspace{60pt}\\
(2)\int_1^e(\log x)^2 dx\ を求めよ。\hspace{50pt}\\
(3)\int_1^ex\log x dx\ を求めよ。\hspace{53pt}\\
\\
(4)f(x)を求めよ。\hspace{93pt}
\end{eqnarray}
2022青山学院大学理工学部過去問
\begin{eqnarray}
{\large\boxed{4}}\ x \gt 0を定義域とする関数f(x)が次の等式\\
f(x)=\int_1^e\log(xt) f(t)dt+x\\
を満たすとき、以下の問いに答えよ。\hspace{30pt}\\
(1)\int_1^e\log x dx\ を求めよ。\hspace{60pt}\\
(2)\int_1^e(\log x)^2 dx\ を求めよ。\hspace{50pt}\\
(3)\int_1^ex\log x dx\ を求めよ。\hspace{53pt}\\
\\
(4)f(x)を求めよ。\hspace{93pt}
\end{eqnarray}
2022青山学院大学理工学部過去問
投稿日:2022.09.29